1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
//! 区間加算 (imos 法 + on-the-fly で遅延解消)。
//!
//! 以下のような問題を考える。
//!
//! ```
//! use proconio::input;
//! # use proconio::source::auto::AutoSource;
//! # let source = AutoSource::from("4  1 3 2 5");
//!
//! input! {
//! #     from source,
//!     n: usize,
//!     a: [usize; n],
//! }
//!
//! let m = (0..n).map(|i| i + a[i]).max().unwrap();
//! let mut dp = vec![0; m + 1];
//! dp[0] = 1;
//!
//! for i in 0..n {
//!     for j in 1..=a[i] {
//!         dp[i + j] += dp[i] * j as i32;
//!     }
//! }
//!
//! // a = [1, 3, 2, 5]
//!
//! // 0: [1, 0, 0, 0, 0, 0, 0, 0, 0]
//! // 1: [1, 1, 0, 0, 0, 0, 0, 0, 0]
//! // 2: [1, 1, 1, 2, 3, 0, 0, 0, 0]
//! // 3: [1, 1, 1, 3, 5, 0, 0, 0, 0]
//! // 4: [1, 1, 1, 3, 8, 6, 9, 12, 15]
//!
//! assert_eq!(dp, [1, 1, 1, 3, 8, 6, 9, 12, 15]);
//! ```
//!
//! これを $O(n)$ 時間で行いたい。
//!
//! 1 階差分を考えると、定数の区間加算になるので、基本的な imos 法で処理できる。
//! $[i+1, i+a\_i]$ に足す値は $\\DP\[i\]$ に依るため、on-the-fly の処理が必要になる。
//!
//! $$
//! \\begin{aligned}
//! &\\qquad \\For{i \\gets (0, 1, \\dots, n-1)} \\\\
//! &\\qquad\\qquad \\For{j \\in \\{1, 2, \\dots, a\_i\\}} \\\\
//! &\\qquad\\qquad\\qquad \\DP\[i+j\] \\xgets{+} \\DP\[i\] \\cdot j \\\\
//! \\end{aligned}
//! $$
//!
//! ```
//! # use proconio::input;
//! # use proconio::source::auto::AutoSource;
//! # let source = AutoSource::from("4  1 3 2 5");
//! #
//! # input! {
//! #     from source,
//! #     n: usize,
//! #     a: [usize; n],
//! # }
//! #
//! # let m = (0..n).map(|i| i + a[i]).max().unwrap();
//! let mut dp0 = vec![0; m + 1];  // dp
//! let mut dp1 = vec![0; m + 2];  // dp'
//! let mut dp2 = vec![0; m + 3];  // dp''
//! dp2[0] = 1;
//! dp2[1] = -2;
//! dp2[2] = 1;
//!
//! for i in 0..n {
//!     dp1[i] += dp2[i];
//!     if i > 0 {
//!         dp1[i] += dp1[i - 1];
//!     }
//!     dp0[i] += dp1[i];
//!     if i > 0 {
//!         dp0[i] += dp0[i - 1];
//!     }
//!     dp2[i + a[i] + 1] -= dp0[i] * a[i] as i32;
//!     dp2[i + a[i] + 2] += dp0[i] * a[i] as i32;
//!     dp2[i + 1] += dp0[i];
//!     dp2[i + a[i] + 1] -= dp0[i];
//! }
//! for i in n..=m {
//!     dp1[i] = dp1[i - 1] + dp2[i];
//!     dp0[i] = dp0[i - 1] + dp1[i];
//! }
//!
//! assert_eq!(dp0, [1, 1, 1, 3, 8, 6, 9, 12, 15]);
//! ```
//!
//! 0 次の加算(一つの値の加算)、1 次の加算(区間への定数の加算)に関して、
//! 直接 `dp0[_]` や `dp1[_]` に足すと総和の整合性が取れなくなるので、
//! `dp2[_]` の意味で言い換えるか、別の値として持つ必要がある。
//! 前者では、無駄に足す個数が増えるので、次数が増えたときにつらそう。
//!
//! ```
//! # use proconio::input;
//! # use proconio::source::auto::AutoSource;
//! # let source = AutoSource::from("4  1 3 2 5");
//! #
//! # input! {
//! #     from source,
//! #     n: usize,
//! #     a: [usize; n],
//! # }
//! #
//! # let m = (0..n).map(|i| i + a[i]).max().unwrap();
//! #
//! let mut res = vec![0; m + 1];
//! #[allow(unused)]
//! let mut dp0 = vec![0; m + 1];
//! let mut dp1 = vec![0; m + 2];
//! let mut dp2 = vec![0; m + 2];
//! let mut acc0 = 1;
//! let mut acc1 = 0;
//!
//! dp1[1] = -acc0;
//! for i in 0..n {
//!     acc1 += dp2[i];
//!     acc0 += dp1[i] + acc1;
//!     res[i] = acc0;
//!     
//!     dp1[i + a[i] + 1] -= acc0 * a[i] as i32;
//!     dp2[i + 1] += acc0;
//!     dp2[i + a[i] + 1] -= acc0;
//! }
//! for i in n..=m {
//!     acc1 += dp2[i];
//!     acc0 += dp1[i] + acc1;
//!     res[i] = acc0;
//! }
//! assert_eq!(res, [1, 1, 1, 3, 8, 6, 9, 12, 15]);
//! ```
//!
//! ## To-do / Notes
//! - 数式からの導出をちゃんと書く
//! - $\\DP\[i+j\] \\xgets{+}\\DP\[i\]\\cdot j^2$ について書いてみる
//! - よくある累積和とは添字の解釈が異なる? 明確にしておく
//! - クエリがオフラインで on-the-fly が不要の場合と比較してみる
//! - 遅延セグ木で区間 $O(1)$ 次加算と何かしらの fold について考える

#[test]
fn linear() {
    let a = vec![1, 3, 2, 5, 7];

    let n = a.len();
    let m = (0..n).map(|i| i + a[i]).max().unwrap();
    let expected = {
        let mut dp = vec![0; m + 1];
        dp[0] = 1;
        for i in 0..n {
            for j in 1..=a[i] {
                dp[i + j] += dp[i] * j as i32;
            }
        }
        dp
    };

    let actual = {
        let mut res = vec![0; m + 1];
        let dp0 = vec![0; m + 1];
        let mut dp1 = vec![0; m + 2];
        let mut dp2 = vec![0; m + 2];
        let mut acc0 = 1;
        let mut acc1 = 0;

        dp1[1] = -acc0;
        for i in 0..n {
            acc1 += dp2[i];
            acc0 += dp1[i] + acc1;
            res[i] = dp0[i] + acc0;

            dp1[i + a[i] + 1] -= acc0 * a[i] as i32;
            dp2[i + 1] += acc0;
            dp2[i + a[i] + 1] -= acc0;
        }
        for i in n..=m {
            acc1 += dp2[i];
            acc0 += dp1[i] + acc1;
            res[i] = dp0[i] + acc0;
        }
        res
    };

    assert_eq!(actual, expected);
}

#[test]
fn quadratic() {
    let a = vec![1, 3, 2, 5, 7];
    // let a = vec![5, 0, 0, 0, 0, 0, 0, 0, 0];

    let n = a.len();
    let m = (0..n).map(|i| i + a[i]).max().unwrap();
    let expected = {
        let mut dp = vec![0; m + 1];
        dp[0] = 1;
        for i in 0..n {
            for j in 1..=a[i] {
                dp[i + j] += dp[i] * j.pow(2) as i32;
            }
        }
        dp
    };

    // index:  0   1   2   3   4   5   6   7   8
    // a:      1   0   0   0   0   0   0   0   0
    // add:    0   1   4   9  16  25   0   0   0
    // add':   0   1   3   5   7   9 -25   0   0
    // add'':  0   1   2   2   2   2 -16  25   0
    // add''': 0   1   1   0   0   0 -18  43 -25

    let actual = {
        let mut res = vec![0; m + 1];
        let dp0 = vec![0; m + 1];
        let mut dp1 = vec![0; m + 2];
        let mut dp2 = vec![0; m + 2];
        let mut dp3 = vec![0; m + 2];
        let mut acc0 = 1;
        let mut acc1 = 0;
        let mut acc2 = 0;

        dp1[1] = -acc0;
        for i in 0..n {
            acc2 += dp3[i];
            acc1 += dp2[i] + acc2;
            acc0 += dp1[i] + acc1;
            res[i] = dp0[i] + acc0;

            // linear:
            // dp1[i + a[i] + 1] -= acc0 * a[i] as i32;
            // dp2[i + 1] += acc0;
            // dp2[i + a[i] + 1] -= acc0;

            dp2[i + a[i] + 1] -= 2 * acc0 * a[i] as i32;
            dp3[i + 1] += 2 * acc0;
            dp3[i + a[i] + 1] -= 2 * acc0;
            dp1[i + a[i] + 1] -= acc0 * a[i].pow(2) as i32;

            dp2[i + 1] += -acc0;
            dp2[i + a[i] + 1] -= -acc0;
        }
        for i in n..=m {
            acc2 += dp3[i];
            acc1 += dp2[i] + acc2;
            acc0 += dp1[i] + acc1;
            res[i] = dp0[i] + acc0;
        }
        res
    };

    assert_eq!(actual, expected);
}