1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
//! 区間加算 (imos 法 + on-the-fly で遅延解消)。
//!
//! 以下のような問題を考える。
//!
//! ```
//! use proconio::input;
//! # use proconio::source::auto::AutoSource;
//! # let source = AutoSource::from("4 1 3 2 5");
//!
//! input! {
//! # from source,
//! n: usize,
//! a: [usize; n],
//! }
//!
//! let m = (0..n).map(|i| i + a[i]).max().unwrap();
//! let mut dp = vec![0; m + 1];
//! dp[0] = 1;
//!
//! for i in 0..n {
//! for j in 1..=a[i] {
//! dp[i + j] += dp[i] * j as i32;
//! }
//! }
//!
//! // a = [1, 3, 2, 5]
//!
//! // 0: [1, 0, 0, 0, 0, 0, 0, 0, 0]
//! // 1: [1, 1, 0, 0, 0, 0, 0, 0, 0]
//! // 2: [1, 1, 1, 2, 3, 0, 0, 0, 0]
//! // 3: [1, 1, 1, 3, 5, 0, 0, 0, 0]
//! // 4: [1, 1, 1, 3, 8, 6, 9, 12, 15]
//!
//! assert_eq!(dp, [1, 1, 1, 3, 8, 6, 9, 12, 15]);
//! ```
//!
//! これを $O(n)$ 時間で行いたい。
//!
//! 1 階差分を考えると、定数の区間加算になるので、基本的な imos 法で処理できる。
//! $[i+1, i+a\_i]$ に足す値は $\\DP\[i\]$ に依るため、on-the-fly の処理が必要になる。
//!
//! $$
//! \\begin{aligned}
//! &\\qquad \\For{i \\gets (0, 1, \\dots, n-1)} \\\\
//! &\\qquad\\qquad \\For{j \\in \\{1, 2, \\dots, a\_i\\}} \\\\
//! &\\qquad\\qquad\\qquad \\DP\[i+j\] \\xgets{+} \\DP\[i\] \\cdot j \\\\
//! \\end{aligned}
//! $$
//!
//! ```
//! # use proconio::input;
//! # use proconio::source::auto::AutoSource;
//! # let source = AutoSource::from("4 1 3 2 5");
//! #
//! # input! {
//! # from source,
//! # n: usize,
//! # a: [usize; n],
//! # }
//! #
//! # let m = (0..n).map(|i| i + a[i]).max().unwrap();
//! let mut dp0 = vec![0; m + 1]; // dp
//! let mut dp1 = vec![0; m + 2]; // dp'
//! let mut dp2 = vec![0; m + 3]; // dp''
//! dp2[0] = 1;
//! dp2[1] = -2;
//! dp2[2] = 1;
//!
//! for i in 0..n {
//! dp1[i] += dp2[i];
//! if i > 0 {
//! dp1[i] += dp1[i - 1];
//! }
//! dp0[i] += dp1[i];
//! if i > 0 {
//! dp0[i] += dp0[i - 1];
//! }
//! dp2[i + a[i] + 1] -= dp0[i] * a[i] as i32;
//! dp2[i + a[i] + 2] += dp0[i] * a[i] as i32;
//! dp2[i + 1] += dp0[i];
//! dp2[i + a[i] + 1] -= dp0[i];
//! }
//! for i in n..=m {
//! dp1[i] = dp1[i - 1] + dp2[i];
//! dp0[i] = dp0[i - 1] + dp1[i];
//! }
//!
//! assert_eq!(dp0, [1, 1, 1, 3, 8, 6, 9, 12, 15]);
//! ```
//!
//! 0 次の加算(一つの値の加算)、1 次の加算(区間への定数の加算)に関して、
//! 直接 `dp0[_]` や `dp1[_]` に足すと総和の整合性が取れなくなるので、
//! `dp2[_]` の意味で言い換えるか、別の値として持つ必要がある。
//! 前者では、無駄に足す個数が増えるので、次数が増えたときにつらそう。
//!
//! ```
//! # use proconio::input;
//! # use proconio::source::auto::AutoSource;
//! # let source = AutoSource::from("4 1 3 2 5");
//! #
//! # input! {
//! # from source,
//! # n: usize,
//! # a: [usize; n],
//! # }
//! #
//! # let m = (0..n).map(|i| i + a[i]).max().unwrap();
//! #
//! let mut res = vec![0; m + 1];
//! #[allow(unused)]
//! let mut dp0 = vec![0; m + 1];
//! let mut dp1 = vec![0; m + 2];
//! let mut dp2 = vec![0; m + 2];
//! let mut acc0 = 1;
//! let mut acc1 = 0;
//!
//! dp1[1] = -acc0;
//! for i in 0..n {
//! acc1 += dp2[i];
//! acc0 += dp1[i] + acc1;
//! res[i] = acc0;
//!
//! dp1[i + a[i] + 1] -= acc0 * a[i] as i32;
//! dp2[i + 1] += acc0;
//! dp2[i + a[i] + 1] -= acc0;
//! }
//! for i in n..=m {
//! acc1 += dp2[i];
//! acc0 += dp1[i] + acc1;
//! res[i] = acc0;
//! }
//! assert_eq!(res, [1, 1, 1, 3, 8, 6, 9, 12, 15]);
//! ```
//!
//! ## To-do / Notes
//! - 数式からの導出をちゃんと書く
//! - $\\DP\[i+j\] \\xgets{+}\\DP\[i\]\\cdot j^2$ について書いてみる
//! - よくある累積和とは添字の解釈が異なる? 明確にしておく
//! - クエリがオフラインで on-the-fly が不要の場合と比較してみる
//! - 遅延セグ木で区間 $O(1)$ 次加算と何かしらの fold について考える
#[test]
fn linear() {
let a = vec![1, 3, 2, 5, 7];
let n = a.len();
let m = (0..n).map(|i| i + a[i]).max().unwrap();
let expected = {
let mut dp = vec![0; m + 1];
dp[0] = 1;
for i in 0..n {
for j in 1..=a[i] {
dp[i + j] += dp[i] * j as i32;
}
}
dp
};
let actual = {
let mut res = vec![0; m + 1];
let dp0 = vec![0; m + 1];
let mut dp1 = vec![0; m + 2];
let mut dp2 = vec![0; m + 2];
let mut acc0 = 1;
let mut acc1 = 0;
dp1[1] = -acc0;
for i in 0..n {
acc1 += dp2[i];
acc0 += dp1[i] + acc1;
res[i] = dp0[i] + acc0;
dp1[i + a[i] + 1] -= acc0 * a[i] as i32;
dp2[i + 1] += acc0;
dp2[i + a[i] + 1] -= acc0;
}
for i in n..=m {
acc1 += dp2[i];
acc0 += dp1[i] + acc1;
res[i] = dp0[i] + acc0;
}
res
};
assert_eq!(actual, expected);
}
#[test]
fn quadratic() {
let a = vec![1, 3, 2, 5, 7];
// let a = vec![5, 0, 0, 0, 0, 0, 0, 0, 0];
let n = a.len();
let m = (0..n).map(|i| i + a[i]).max().unwrap();
let expected = {
let mut dp = vec![0; m + 1];
dp[0] = 1;
for i in 0..n {
for j in 1..=a[i] {
dp[i + j] += dp[i] * j.pow(2) as i32;
}
}
dp
};
// index: 0 1 2 3 4 5 6 7 8
// a: 1 0 0 0 0 0 0 0 0
// add: 0 1 4 9 16 25 0 0 0
// add': 0 1 3 5 7 9 -25 0 0
// add'': 0 1 2 2 2 2 -16 25 0
// add''': 0 1 1 0 0 0 -18 43 -25
let actual = {
let mut res = vec![0; m + 1];
let dp0 = vec![0; m + 1];
let mut dp1 = vec![0; m + 2];
let mut dp2 = vec![0; m + 2];
let mut dp3 = vec![0; m + 2];
let mut acc0 = 1;
let mut acc1 = 0;
let mut acc2 = 0;
dp1[1] = -acc0;
for i in 0..n {
acc2 += dp3[i];
acc1 += dp2[i] + acc2;
acc0 += dp1[i] + acc1;
res[i] = dp0[i] + acc0;
// linear:
// dp1[i + a[i] + 1] -= acc0 * a[i] as i32;
// dp2[i + 1] += acc0;
// dp2[i + a[i] + 1] -= acc0;
dp2[i + a[i] + 1] -= 2 * acc0 * a[i] as i32;
dp3[i + 1] += 2 * acc0;
dp3[i + a[i] + 1] -= 2 * acc0;
dp1[i + a[i] + 1] -= acc0 * a[i].pow(2) as i32;
dp2[i + 1] += -acc0;
dp2[i + a[i] + 1] -= -acc0;
}
for i in n..=m {
acc2 += dp3[i];
acc1 += dp2[i] + acc2;
acc0 += dp1[i] + acc1;
res[i] = dp0[i] + acc0;
}
res
};
assert_eq!(actual, expected);
}