1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
//! 最大流 (Dinic)。

use std::cell::RefCell;
use std::collections::VecDeque;
use std::iter::Peekable;
use std::ops::{AddAssign, SubAssign};
use std::rc::Rc;

/// Dinic 法に基づく最大流。
///
/// # Idea
/// `todo!()`
///
/// # Complexity
/// $O(|V|^2|E|)$ 時間。
///
/// 辺容量が整数のとき、多くのパラメータによって bound できることが知られている。
/// 以下の条件は、高々定数個の例外があってもよい。
///
/// - 最大流を $F$ として $O(F|E|)$ 時間。
/// - 辺容量が高々 $k$ のとき $O(k\\,|E|^{3/2})$ 時間。
/// - 辺容量が高々 $k$ で多重辺がないとき $O(k\\,|V|^{2/3}|E|)$ 時間。
/// - 各頂点を通れるフロー量が高々 $k$ のとき $O(k\\,|V|^{1/2}|E|)$ 時間。
///     - $k \\ge \\max\_v \\min\\{\\sum\_{e\\in\\delta^+(v)} u\_e, \\sum\_{e\\in\\delta^-(v)} u\_e\\}$.
///     - 二部マッチングであれば $k = 1$ であり、$O(|V|^{1/2}|E|)$ 時間。
///
/// # Examples
///
/// 次のようなグラフを考える。
/// [Wikipedia](https://en.wikipedia.org/wiki/Dinic%27s_algorithm#Example) にある例である。
///
/// ```text
///       10           4       10
///  +--------> [1] ----> [3] -------+
///  |           | \       ^ 4       |
///  |           |  \  8   |         v
/// [0]        2 |   \--> [4] ----> [5]
///  |           |         ^   10
///  |    10     v     9   |
///  +--------> [2] -------+
/// ```
///
/// 流れるフローは次の通りで、$19$ である。
///
/// - $(0, 1, 3, 5)$ に $4$
/// - $(0, 1, 4, 5)$ に $6$
/// - $(0, 2, 4, 5)$ に $4$
/// - $(0, 2, 4, 3, 5)$ に $5$
///
/// ```
/// use std::cell::RefCell;
/// use std::rc::Rc;
///
/// use nekolib::graph::dinic;
///
/// let es = vec![
///     vec![(1, 10), (2, 10)],       // 0
///     vec![(2, 2), (3, 4), (4, 8)], // 1
///     vec![(4, 9)],                 // 2
///     vec![(5, 10)],                // 3
///     vec![(3, 6), (5, 10)],        // 4
///     vec![],                       // 5
/// ];
/// let n = es.len();
/// let g = {
///     let mut g = vec![vec![]; 6]; // [from]: [(to, capacity, rev), ...]
///     for from in 0..n {
///         for &(to, capacity) in &es[from] {
///             let from_len = g[from].len();
///             let to_len = g[to].len();
///             g[from].push((to, Rc::new(RefCell::new(capacity)), to_len));
///             g[to].push((from, Rc::new(RefCell::new(0)), from_len));
///         }
///     }
///     g
/// };
///
/// let index = |&v: &usize| v;
/// let delta = |&v: &usize| g[v].iter().map(|&(nv, ref w, r)| (nv, w.clone(), r));
/// let rev = |&nv: &usize, &r: &usize| g[nv][r].1.clone();
///
/// let s = 0;
/// let t = n - 1;
/// let max_flow = dinic(n, s, t, 0..n, 0, index, delta, rev);
/// assert_eq!(max_flow, 19);
/// ```
///
/// # References
/// - <https://misawa.github.io/others/flow/dinic_time_complexity.html>
pub fn dinic<V, W, R, F>(
    n: usize,
    s: V,
    t: V,
    vs: impl Iterator<Item = V> + Clone,
    zero: W,
    index: impl Fn(&V) -> usize + Copy,
    delta: impl Fn(&V) -> F + Copy,
    rev: impl Fn(&V, &R) -> Rc<RefCell<W>> + Copy,
) -> W
where
    V: Clone,
    W: Ord + Clone + AddAssign + SubAssign,
    R: Clone,
    F: Iterator<Item = (V, Rc<RefCell<W>>, R)>,
{
    let mut res = zero.clone();
    loop {
        let level = dual(n, s.clone(), zero.clone(), index, delta);
        if level[index(&t)] == n {
            break;
        }
        let iter: Vec<_> = vs
            .clone()
            .map(|v| Rc::new(RefCell::new(delta(&v).peekable())))
            .collect();
        loop {
            match primal(&s, &t, zero.clone(), &level, index, rev, &iter) {
                Some(f) => res += f,
                None => break,
            }
        }
    }
    res
}

fn dual<V, W, R, F>(
    n: usize,
    s: V,
    zero: W,
    index: impl Fn(&V) -> usize,
    delta: impl Fn(&V) -> F,
) -> Vec<usize>
where
    V: Clone,
    W: Ord + Clone + AddAssign + SubAssign,
    R: Clone,
    F: Iterator<Item = (V, Rc<RefCell<W>>, R)>,
{
    let mut level = vec![n; n];
    let mut q = VecDeque::new();
    level[index(&s)] = 0;
    q.push_back(s);
    while let Some(v) = q.pop_front() {
        let i = index(&v);
        for (nv, w, _) in delta(&v) {
            let ni = index(&nv);
            if *w.borrow() > zero && level[ni] == n {
                level[ni] = level[i] + 1;
                q.push_back(nv);
            }
        }
    }
    level
}

fn primal<V, W, R, I>(
    s: &V,
    t: &V,
    zero: W,
    level: &[usize],
    index: impl Fn(&V) -> usize,
    rev: impl Fn(&V, &R) -> Rc<RefCell<W>>,
    iter: &[Rc<RefCell<Peekable<I>>>],
) -> Option<W>
where
    V: Clone,
    W: Ord + Clone + AddAssign + SubAssign,
    R: Clone,
    I: Iterator<Item = (V, Rc<RefCell<W>>, R)>,
{
    let ti = index(t);
    let mut es = vec![];
    let mut vis = vec![index(s)];
    'find_path: while let Some(&vi) = vis.last() {
        if vi == ti {
            break;
        }
        loop {
            if let Some((nv, w, r)) = iter[vi].borrow_mut().peek() {
                let nvi = index(&nv);
                if *w.borrow() > zero && level[vi] < level[nvi] {
                    es.push((w.clone(), nv.clone(), r.clone()));
                    vis.push(nvi);
                    continue 'find_path;
                }
            } else {
                break;
            }

            iter[vi].borrow_mut().next();
        }
        es.pop();
        vis.pop();
        if let Some(&vi) = vis.last() {
            iter[vi].borrow_mut().next();
        }
    }

    if es.is_empty() {
        return None;
    }

    let f = es.iter().map(|(e, _, _)| e.borrow().clone()).min().unwrap();

    for (w, nv, r) in es {
        *w.borrow_mut() -= f.clone();
        *rev(&nv, &r).borrow_mut() += f.clone();
    }

    Some(f)
}

#[test]
fn dinic_misawa_hack() {
    // https://gist.github.com/MiSawa/47b1d99c372daffb6891662db1a2b686
    let n = 500;
    let (s, a, b, c, t) = (0, 1, 2, 3, 4);
    let mut uv = (5, 6);
    let mut es = vec![
        (s, a, 1),
        (s, b, 2),
        (b, a, 2),
        (c, t, 2),
        (a, uv.0, 3),
        (a, uv.1, 3),
    ];
    while uv.1 + 2 < n {
        let nuv = (uv.0 + 2, uv.1 + 2);
        for &x in &[uv.0, uv.1] {
            for &y in &[nuv.0, nuv.1] {
                es.push((x, y, 3));
            }
        }
        uv = nuv;
    }
    es.push((uv.0, c, 3));
    es.push((uv.1, c, 3));

    let g = {
        let mut g = vec![vec![]; n];
        for (from, to, capacity) in es {
            let from_len = g[from].len();
            let to_len = g[to].len();
            g[from].push((to, Rc::new(RefCell::new(capacity)), to_len));
            g[to].push((from, Rc::new(RefCell::new(0)), from_len));
        }
        g
    };

    let index = |&v: &usize| v;
    let delta =
        |&v: &usize| g[v].iter().map(|&(nv, ref w, r)| (nv, w.clone(), r));
    let rev = |&nv: &usize, &r: &usize| g[nv][r].1.clone();
    let flow = dinic(n, s, t, 0..n, 0, index, delta, rev);

    assert_eq!(flow, 2);
}