1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
//! 区分線形凸関数。
use std::cmp::Reverse;
use std::collections::BinaryHeap;
use std::fmt::Debug;
use std::ops::{Add, AddAssign, Bound, RangeInclusive};
/// 区分線形凸関数。
///
/// 整数の多重集合 $L$, $R$ に対して、次の形で表せる関数を管理する:
/// $$ f(x) = c + \\sum\_{l\\in L} (l-x)\_+ + \\sum\_{r\\in R} (x-r)\_+. $$
/// ここで、$(a-x)\_+ = \\max\\{0, a-x\\}$、$(x-a)\_+ = \\max\\{0, x-a\\}$ とする。
/// たとえば、$|x-a| = (a-x)\_+ + (x-a)\_+$ と書ける。
///
/// # Idea
/// `todo!()`
///
/// # Complexity
/// |演算|時間計算量|
/// |---|---|
/// |`new`|$O(1)$|
/// |`add_const`|$O(1)$|
/// |`add_left`, `add_right`, `add_abs`|$O(\\log(\|L\|) + \\log(\|R\|))$|
/// |`min_left`, `min_right`|amortized $O(1)$|
/// |`shift`, `window`|$O(1)$|
/// |`min`, `argmin`|$O(1)$|
///
/// # Examples
/// ```
/// use std::ops::Bound::{Included, Unbounded};
///
/// use nekolib::math::SlopeFunction;
///
/// let mut sf = SlopeFunction::new();
/// sf.add_left(-1);
/// sf.add_left(3);
/// sf.add_right(2);
/// sf.add_const(-10);
/// // f(x) = 0.max(-1-x) + 0.max(3-x) + 0.max(x-2) - 10
/// // x | -5 -4 -3 -2 -1 0 1 2 3 4 5
/// // f(x) | 2 0 -2 -4 -6 -7 -8 -9 -9 -8 -7
/// assert_eq!(sf.min(), -9);
/// assert_eq!(sf.argmin(), (Included(2), Included(3)));
/// ```
///
/// # Notes
/// $(a\_1, a\_2, \\dots, a\_n)$ の中央値を $a\_{\\text{med}}$ とすると、
/// $\\sum\_{i=1}^n |x-a\_i|$ は $x = a\_{\\text{med}}$ のとき最小となる。
/// このことから、値の追加と中央値を求めるクエリを処理できる。
///
/// ```
/// use std::ops::Bound::{Included, Excluded, Unbounded};
///
/// use nekolib::math::SlopeFunction;
///
/// #[derive(Clone, Default)]
/// struct IncrementalMedian(SlopeFunction<i32>);
///
/// impl IncrementalMedian {
/// fn new() -> Self { Self::default() }
/// fn insert(&mut self, a: i32) { self.0.add_abs(a); }
/// fn median(&self) -> Option<i32> {
/// match self.0.argmin().0 {
/// Included(x) => Some(x),
/// Excluded(_) => unreachable!(),
/// Unbounded => None,
/// }
/// }
/// }
///
/// let mut im = IncrementalMedian::new();
/// assert_eq!(im.median(), None); // {{}}
/// im.insert(2);
/// assert_eq!(im.median(), Some(2)); // {{2}}
/// im.insert(3);
/// assert_eq!(im.median(), Some(2)); // {{2, 3}}
/// im.insert(1);
/// assert_eq!(im.median(), Some(2)); // {{1, 2, 3}}
/// im.insert(1);
/// assert_eq!(im.median(), Some(1)); // {{1, 1, 2, 3}}
/// ```
///
/// # References
/// - <https://maspypy.com/slope-trick-1-%E8%A7%A3%E8%AA%AC%E7%B7%A8>
#[derive(Clone, Debug, Default)]
pub struct SlopeFunction<I: Ord> {
left: BinaryHeap<I>,
right: BinaryHeap<Reverse<I>>,
min: I,
shl: I,
shr: I,
}
impl<I: SlopeTrickInt> SlopeFunction<I> {
/// $f(x) = 0$ で初期化する。
///
/// # Examples
/// ```
/// use std::ops::Bound::Unbounded;
///
/// use nekolib::math::SlopeFunction;
///
/// let sf = SlopeFunction::<i32>::new();
/// assert_eq!(sf.min(), 0);
/// assert_eq!(sf.argmin(), (Unbounded, Unbounded));
/// ```
pub fn new() -> Self { Self::default() }
/// $f(x) \\xleftarrow{+} c$ で更新する。
///
/// # Examples
/// ```
/// use nekolib::math::SlopeFunction;
///
/// let mut sf = SlopeFunction::new();
/// assert_eq!(sf.min(), 0);
/// sf.add_const(3);
/// assert_eq!(sf.min(), 3);
/// sf.add_const(-1);
/// assert_eq!(sf.min(), 2);
/// ```
pub fn add_const(&mut self, c: I) { self.min += c; }
/// $f(x) \\xleftarrow{+} (l-x)\_+$ で更新する。
///
/// # Examples
/// ```
/// use std::ops::Bound::{Included, Unbounded};
///
/// use nekolib::math::SlopeFunction;
///
/// let mut sf = SlopeFunction::new();
/// sf.add_left(4);
/// assert_eq!(sf.argmin(), (Included(4), Unbounded));
/// ```
pub fn add_left(&mut self, l: I) {
if self.right.is_empty() {
self.left.push(l);
return;
}
self.min += l.doz(self.right.peek().unwrap().0);
self.right.push(Reverse(l));
let l = self.right.pop().unwrap().0;
self.left.push(l);
}
/// $f(x) \\xleftarrow{+} (x-r)\_+$ で更新する。
///
/// # Examples
/// ```
/// use std::ops::Bound::{Included, Unbounded};
///
/// use nekolib::math::SlopeFunction;
///
/// let mut sf = SlopeFunction::new();
/// sf.add_right(4);
/// assert_eq!(sf.argmin(), (Unbounded, Included(4)));
/// ```
pub fn add_right(&mut self, r: I) {
if self.left.is_empty() {
self.right.push(Reverse(r));
return;
}
self.min += self.left.peek().unwrap().doz(r);
self.left.push(r);
let r = self.left.pop().unwrap();
self.right.push(Reverse(r));
}
/// $f(x) \\xleftarrow{+} |x-a|$ で更新する。
///
/// # Examples
/// ```
/// use std::ops::Bound::Included;
///
/// use nekolib::math::SlopeFunction;
///
/// let mut sf = SlopeFunction::new();
/// sf.add_abs(4);
/// assert_eq!(sf.argmin(), (Included(4), Included(4)));
/// ```
pub fn add_abs(&mut self, a: I) {
self.add_left(a);
self.add_right(a);
}
/// $g(x) = \\min\_{y\\le x} f(y)$ として、$f\\gets g$ で更新する。
///
/// # Examples
/// ```
/// use std::ops::Bound::{Included, Unbounded};
///
/// use nekolib::math::SlopeFunction;
///
/// let mut sf = SlopeFunction::new();
/// sf.add_abs(4);
/// assert_eq!(sf.argmin(), (Included(4), Included(4)));
/// sf.min_left();
/// assert_eq!(sf.argmin(), (Included(4), Unbounded));
/// ```
pub fn min_left(&mut self) { self.right.clear(); }
/// $g(x) = \\min\_{y\\ge x} f(y)$ として、$f\\gets g$ で更新する。
///
/// # Examples
/// ```
/// use std::ops::Bound::{Included, Unbounded};
///
/// use nekolib::math::SlopeFunction;
///
/// let mut sf = SlopeFunction::new();
/// sf.add_abs(4);
/// assert_eq!(sf.argmin(), (Included(4), Included(4)));
/// sf.min_right();
/// assert_eq!(sf.argmin(), (Unbounded, Included(4)));
/// ```
pub fn min_right(&mut self) { self.left.clear(); }
/// $g(x) = f(x-a)$ として、$f\\gets g$ で更新する。
///
/// # Examples
/// ```
/// use std::ops::Bound::Included;
///
/// use nekolib::math::SlopeFunction;
///
/// let mut sf = SlopeFunction::new();
/// sf.add_abs(4);
/// assert_eq!(sf.argmin(), (Included(4), Included(4)));
/// sf.shift(2);
/// assert_eq!(sf.argmin(), (Included(6), Included(6)));
/// ```
pub fn shift(&mut self, s: I) {
self.shl += s;
self.shr += s;
}
/// $[a, b]$ に対して $g(x) = \\min\_{y\\in[x-b, x-a]} f(y)$ として、$f\\gets g$ で更新する。
///
/// # Examples
/// ```
/// use std::ops::Bound::Included;
///
/// use nekolib::math::SlopeFunction;
///
/// let mut sf = SlopeFunction::new();
/// sf.add_abs(4);
/// assert_eq!(sf.argmin(), (Included(4), Included(4)));
/// sf.window(-1..=2);
/// assert_eq!(sf.argmin(), (Included(3), Included(6)));
/// ```
pub fn window(&mut self, window: RangeInclusive<I>) {
self.shl += *window.start();
self.shr += *window.end();
}
/// $\\min\_{x\\in\\mathbb{R}} f(x)$ を返す。
///
/// # Examples
/// ```
/// use nekolib::math::SlopeFunction;
///
/// let mut sf = SlopeFunction::new();
/// sf.add_abs(4);
/// sf.add_const(1);
/// assert_eq!(sf.min(), 1);
/// ```
pub fn min(&self) -> I { self.min }
/// $\\argmin\_{x\\in\\mathbb{R}} f(x)$ を返す。
///
/// # Examples
/// ```
/// use std::ops::Bound::Included;
/// use nekolib::math::SlopeFunction;
///
/// let mut sf = SlopeFunction::new();
/// sf.add_abs(4);
/// sf.add_const(1);
/// assert_eq!(sf.argmin(), (Included(4), Included(4)));
/// ```
pub fn argmin(&self) -> (Bound<I>, Bound<I>) {
let left = match self.left.peek() {
Some(&x) => Bound::Included(x + self.shl),
None => Bound::Unbounded,
};
let right = match self.right.peek() {
Some(&Reverse(x)) => Bound::Included(x + self.shr),
None => Bound::Unbounded,
};
(left, right)
}
}
pub trait SlopeTrickInt:
Copy + Add<Output = Self> + AddAssign + Default + Ord
{
// unsigned でいうところの saturating_sub
fn doz(self, rhs: Self) -> Self;
}
macro_rules! impl_slope_trick_int {
( $($ty:tt)* ) => { $(
impl SlopeTrickInt for $ty {
fn doz(self, rhs: Self) -> Self {
0.max(self - rhs)
}
}
)* }
}
impl_slope_trick_int! { i8 i16 i32 i64 i128 isize }