1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
//! Exact cover。
/// Exact cover。
///
/// $n$ 行 $m$ 列の 0/1 行列 $A$ が与えられたとき、行 $\\{0, 1, \\dots, n-1\\}$
/// の部分集合 $S$ であって、各列 $0\\le j\\lt m$ に対して $A\_{i, j}=1$ なる
/// $i\\in S$ がちょうど 1 つ存在するものを探す。
///
/// $\\gdef\\I{\\textcolor{red}{1}}$
/// $$ A = \\begin{pmatrix}
/// 0 & 0 & \\I & 0 & \\I & \\I & 0 \\\\
/// 1 & 0 & 0 & 1 & 0 & 0 & 1 \\\\
/// 0 & 1 & 1 & 0 & 0 & 1 & 0 \\\\
/// \\I & 0 & 0 & \\I & 0 & 0 & 0 \\\\
/// 0 & \\I & 0 & 0 & 0 & 0 & \\I \\\\
/// 0 & 0 & 0 & 1 & 1 & 0 & 1 \\\\
/// \\end{pmatrix} $$
/// のような行列 $A$ に対しては、$\\{0, 3, 4\\}$ が解となる。
///
/// # Idea
/// Dancing links と呼ばれるデータ構造を用いる。
///
/// `todo!()`
///
/// # Examples
/// ```
/// use nekolib::algo::ExactCover;
/// let a = vec![
/// vec![0, 0, 1, 0, 1, 1, 0],
/// vec![1, 0, 0, 1, 0, 0, 1],
/// vec![0, 1, 1, 0, 0, 1, 0],
/// vec![1, 0, 0, 1, 0, 0, 0],
/// vec![0, 1, 0, 0, 0, 0, 1],
/// vec![0, 0, 0, 1, 1, 0, 1],
/// ];
/// let ec = ExactCover::from_matrix(&a);
/// assert_eq!(ec.any(), Some(vec![3, 0, 4]));
/// ```
///
/// # References
/// - <https://www-cs-faculty.stanford.edu/~knuth/papers/dancing-color.ps.gz>
#[derive(Default)]
pub struct ExactCover {
link: Vec<Node>,
size: Vec<usize>,
row: Vec<usize>,
col: Vec<usize>,
}
#[derive(Clone, Copy, Debug, Default)]
struct Node {
left: usize,
right: usize,
up: usize,
down: usize,
}
impl ExactCover {
/// 与えられた行列に対して前計算を行う。
pub fn from_matrix(a: &Vec<Vec<usize>>) -> Self {
let h = a.len();
if h == 0 {
return Self::default();
}
let w = a[0].len();
let mut index = vec![vec![0; w]; h];
let mut size = vec![0; w];
let mut row = vec![0; w + 1];
let mut col = vec![0; w + 1];
let mut cur = w;
for i in 0..h {
for j in 0..w {
if a[i][j] == 0 {
continue;
}
cur += 1;
index[i][j] = cur;
size[j] += 1;
row.push(i);
col.push(j);
}
}
let mut link = vec![Node::default(); cur + 1];
link[0].right = 1;
link[0].left = w;
link[w].right = 0;
link[w].left = w - 1;
for j in 1..w {
link[j].right = j + 1;
link[j].left = j - 1;
}
for i in 0..h {
let first = match (0..w).find(|&j| index[i][j] != 0) {
Some(s) => s,
None => continue,
};
let mut j = first;
loop {
match (j + 1..w).find(|&nj| index[i][nj] != 0) {
Some(nj) => {
link[index[i][j]].right = index[i][nj];
link[index[i][nj]].left = index[i][j];
j = nj;
}
None => {
link[index[i][first]].left = index[i][j];
link[index[i][j]].right = index[i][first];
break;
}
};
}
}
for j in 0..w {
let first = match (0..h).find(|&i| index[i][j] != 0) {
Some(s) => s,
None => continue,
};
let mut i = first;
link[j + 1].down = index[i][j];
link[index[i][j]].up = j + 1;
loop {
match (i + 1..h).find(|&ni| index[ni][j] != 0) {
Some(ni) => {
link[index[i][j]].down = index[ni][j];
link[index[ni][j]].up = index[i][j];
i = ni;
}
None => {
link[j + 1].up = index[i][j];
link[index[i][j]].down = j + 1;
break;
}
}
}
}
Self { link, size, row, col }
}
/// 解を全て探す。
pub fn all(mut self) -> Vec<Vec<usize>> {
if self.link.is_empty() || self.size.iter().any(|&x| x == 0) {
return vec![];
}
let mut res = vec![];
let mut cur = vec![];
self.dfs(&mut cur, &mut res, false);
res
}
/// 解を探す。一つ見つかった時点で打ち切る。
pub fn any(mut self) -> Option<Vec<usize>> {
if self.link.is_empty() || self.size.iter().any(|&x| x == 0) {
return None;
}
let mut res = vec![];
let mut cur = vec![];
self.dfs(&mut cur, &mut res, true);
res.pop()
}
fn dfs(
&mut self,
cur: &mut Vec<usize>,
res: &mut Vec<Vec<usize>>,
any: bool,
) {
if self.link[0].right == 0 {
res.push(cur.clone());
return;
}
let c = self.choose();
self.cover(c);
let mut r = self.link[c].down;
while r != c {
cur.push(self.row[r]);
let mut j = self.link[r].right;
while j != r {
self.cover(self.col[j] + 1);
j = self.link[j].right;
}
self.dfs(cur, res, any);
if any && !res.is_empty() {
return;
}
cur.pop();
let mut j = self.link[r].left;
while j != r {
self.uncover(self.col[j] + 1);
j = self.link[j].left;
}
r = self.link[r].down;
}
self.uncover(c);
}
fn choose(&self) -> usize {
let mut j = self.link[0].right;
let mut c = j;
let mut s = self.size[j - 1];
while j != 0 {
if self.size[j - 1] < s {
c = j;
s = self.size[j - 1];
}
j = self.link[j].right;
}
c
}
fn cover(&mut self, c: usize) {
let left = self.link[c].left;
let right = self.link[c].right;
self.link[right].left = left;
self.link[left].right = right;
let mut i = self.link[c].down;
while i != c {
let mut j = self.link[i].right;
while j != i {
let up = self.link[j].up;
let down = self.link[j].down;
self.link[down].up = up;
self.link[up].down = down;
self.size[self.col[j]] -= 1;
j = self.link[j].right;
}
i = self.link[i].down;
}
}
fn uncover(&mut self, c: usize) {
let mut i = self.link[c].up;
while i != c {
let mut j = self.link[i].left;
while j != i {
self.size[self.col[j]] += 1;
let down = self.link[j].down;
let up = self.link[j].up;
self.link[down].up = j;
self.link[up].down = j;
j = self.link[j].left;
}
i = self.link[i].up;
}
let right = self.link[c].right;
let left = self.link[c].left;
self.link[right].left = c;
self.link[left].right = c;
}
}