1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
//! 二分探索。
use std::ops::{Range, RangeFrom, RangeTo};
/// 二分探索。
///
/// $\\gdef\\halfopen#1#2{[#1, #2)}$
/// 述語 $f$ は、ある $x$ に対して次が成り立つとする。
/// - $y\\in\\halfopen{L}{x} \\implies f(y)$
/// - $y\\in\\halfopen{x}{R} \\implies \\lnot f(y)$
///
/// この $x$ を返す。
///
/// # Idea
/// - `RangeFrom<u32>` などに関しては [指数探索](https://rsk0315.hatenablog.com/entry/2021/12/19/124017)。
/// - `Range<f64>` などに関しては [ビット表現を整数と見て二分探索](https://rsk0315.hatenablog.com/entry/2022/04/07/004618)。
///
/// # Notes
/// 下端が条件を満たすかを判定するのが不都合なときは、下端を一つ大きく取って別で処理するとよいかも。
/// cf. [提出 #34955711](https://atcoder.jp/contests/abc269/submissions/34955711)
///
/// # Examples
/// ```
/// use nekolib::traits::Bisect;
///
/// let pred = |&x: &i32| x * x < 200;
/// assert_eq!((0..100).bisect(pred), 15);
/// assert_eq!((0..).bisect(pred), 15);
///
/// let a = [0, 1, 4, 5, 5, 5, 9];
/// let pred = |&x: &i32| x < 5;
/// assert_eq!(a.bisect(pred), 3);
/// assert_eq!(a[5..].bisect(pred), 0); // [5, 9]
/// assert_eq!(a[..0].bisect(pred), 0); // []
///
/// let pred = |&x: &f64| 2.0_f64.powf(x) < 3.0;
/// let lg3 = 3.0_f64.log2();
/// // 1.584962500721156
/// assert!(((1.0_f64..2.0).bisect(pred) - lg3).abs() <= 1e-16);
/// assert_eq!((1.0_f64..2.0).bisect(pred), lg3); // !
/// ```
pub trait Bisect {
type Input;
type Output;
fn bisect(&self, pred: impl FnMut(&Self::Input) -> bool) -> Self::Output;
}
macro_rules! impl_bisect_int {
($t:ty) => {
impl Bisect for Range<$t> {
type Input = $t;
type Output = $t;
fn bisect(&self, mut pred: impl FnMut(&$t) -> bool) -> $t {
let Range { start: mut ok, end: mut bad } = *self;
if !pred(&ok) {
return ok;
}
while bad - ok > 1 {
let mid = ok + (bad - ok) / 2;
*(if pred(&mid) { &mut ok } else { &mut bad }) = mid;
}
bad
}
}
impl Bisect for RangeFrom<$t> {
type Input = $t;
type Output = $t;
fn bisect(&self, mut pred: impl FnMut(&$t) -> bool) -> $t {
let RangeFrom { start: ok } = *self;
if !pred(&ok) {
return ok;
}
let mut w = 1;
while pred(&(ok + w)) {
w *= 2;
}
(ok..ok + w).bisect(pred)
}
}
impl Bisect for RangeTo<$t> {
type Input = $t;
type Output = $t;
fn bisect(&self, mut pred: impl FnMut(&$t) -> bool) -> $t {
let RangeTo { end: bad } = *self;
if pred(&bad) {
return bad;
}
let mut w = 1;
while !pred(&(bad - w)) {
w *= 2;
}
(bad - w..bad).bisect(pred)
}
}
};
( $( $t:ty )* ) => { $( impl_bisect_int! { $t } )* };
}
impl_bisect_int! { i8 i16 i32 i64 i128 isize u8 u16 u32 u64 u128 usize }
macro_rules! impl_bisect_float {
(
$(
(
$fty:ty, $ity:ty, $uty:ty, $w:literal,
$f2u:ident, $u2f:ident, $mask:ident
),
)*
) => { $(
impl Bisect for Range<$fty> {
type Input = $fty;
type Output = $fty;
fn bisect(&self, mut pred: impl FnMut(&$fty) -> bool) -> $fty {
let Range { start, end } = *self;
let start = $f2u(start);
let end = $f2u(end);
$u2f((start..end).bisect(|&u| pred(&$u2f(u))))
}
}
fn $mask(u: $uty) -> $uty {
((u as $ity >> ($w - 1)) as $uty >> 1) | 1 << ($w - 1)
}
fn $f2u(f: $fty) -> $uty {
let u = f.to_bits();
u ^ $mask(u)
}
fn $u2f(u: $uty) -> $fty { <$fty>::from_bits(u ^ $mask(!u)) }
)* };
}
impl_bisect_float! {
(f32, i32, u32, 32, f2u32, u2f32, mask32),
(f64, i64, u64, 64, f2u64, u2f64, mask64),
}
impl<T> Bisect for [T] {
type Input = T;
type Output = usize;
fn bisect(&self, mut pred: impl FnMut(&T) -> bool) -> usize {
if self.is_empty() || !pred(&self[0]) {
return 0;
}
let mut ok = 0;
let mut bad = self.len();
while bad - ok > 1 {
let mid = ok + (bad - ok) / 2;
*(if pred(&self[mid]) { &mut ok } else { &mut bad }) = mid;
}
bad
}
}
#[test]
fn test() {
{
let pred = |&x: &i64| x < 100;
assert_eq!((0_i64..200).bisect(pred), 100);
assert_eq!((0_i64..).bisect(pred), 100);
assert_eq!((..200_i64).bisect(pred), 100);
}
{
let pred = |&x: &i64| x.abs() < 100;
assert_eq!((0_i64..200).bisect(pred), 100);
assert_eq!((0_i64..).bisect(pred), 100);
assert_eq!((..0_i64).bisect(|x| !pred(x)), -99);
}
{
let pred = |&x: &i64| x < 5;
let a = vec![0, 1, 4, 5, 5, 9];
assert_eq!(a.bisect(pred), 3);
assert_eq!(a[4..].bisect(pred), 0);
}
{
let pred = |&x: &f64| 2.0_f64.powf(x) < 3.0;
assert!(((1.0_f64..2.0).bisect(pred) - 3.0_f64.log2()) <= 5.0e-324);
// println!("{:.40}", 3.0_f64.log2());
// println!("{:.40}", (1.0_f64..2.0).bisect(pred));
}
{
assert_eq!([0, 1, 4, 5, 9].bisect(|&x: &i32| x < 5), 3);
assert_eq!((0..100).bisect(|&x: &i32| x * x < 200), 15);
assert_eq!((0..).bisect(|&x: &i32| x * x < 200), 15);
}
{
let pred = |&x: &i32| x * x < 200;
assert_eq!((0..100).bisect(pred), 15);
assert_eq!((0..).bisect(pred), 15);
}
}