1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
//! 全方位木 DP。

use std::collections::VecDeque;

/// 全方位木 DP。
///
/// 木の catamorphism。
/// 各頂点を根としたときのものをまとめて求める。
///
/// 二項演算 $\circ: S\\times S\\to S$ と $\star: S\\times T\\to S$ を考える。
/// $(S, \\circ)$ は単位元 $\\mathrm{id}\_{\\circ}$ を持つモノイドとする。
/// 木の各辺は一つずつ $T$ の値を持っているとし、辺 $(v, u)$ の値を $e\_{v, u}$
/// とする。
///
/// 頂点 $v$ が葉のとき、$f(v) = \\mathrm{id}\_{\\circ}$ とする[^1]。
/// そうでないとき、$v$ に隣接する頂点を順に
/// $\\langle u\_1, u\_2, \\dots, u\_k\\rangle$ とする。$v$ が根のとき、
/// $$ f(v) = (f\_v(u\_1)\\star e\_{u\_1, v})\\circ\\dots\\circ(f\_v(u\_k)\\star e\_{u\_k, v}) $$
/// で定める。ただし、$f\_v(u)$ は、「$v$ を取り除いた森において $u$ を含む木で
/// $u$ を根としたもの」における $f(u)$ とする。
///
/// [^1]: すなわち、頂点数 1 の木における $f$ の値が $\\mathrm{id}\_{\\circ}$ となる。
///
/// <img src="../../../../images/tree_cata.png" width="300" alt=""><img src="../../../../../images/tree_cata.png" width="300" alt="">
///
/// 上図グラフにおいて、頂点 $1$ に隣接する頂点のうち、$0$ が最後に来るものとすれば
/// $$ \\begin{aligned}
/// f(1) &= f\_0(1)\\circ(f\_1(0)\\star e\_{0, 1}) \\\\
/// &= f\_0(1) \\circ ((f\_0(2)\\star e\_{2, 0})\\star e\_{0, 1})
/// \\end{aligned} $$
/// のようになる。
///
/// このように定められる $f$ に対し、$f(0), f(1), \\dots, f(n-1)$ を求める。
///
/// # Idea
/// まず、根を $0$ として木をトポロジカルソートしておく。
/// これにより、ボトムアップの DP を単にループで行うことができ、$f(0)$
/// が求まる。次に、上で $f(1)$ を求めたときのように、トップダウンに DP
/// をしながら(ボトムアップの DP での結果を利用して)残りの頂点について求める。
///
/// ## Implementation notes
/// トポロジカルソートの前処理パートは、木が同じであれば $(\\circ, \\star)$
/// に依らないので使い回しできる。
///
/// 実装においては、$\\circ: S\\times S\\to S$ を `fold`、$\\mathrm{id}\_{\\circ}$
/// を `empty`、$\\star: S\\times T\\to S$ を `map` と呼んでいる。
///
/// `empty` は葉での値(頂点数 1 の木での値)と `fold` の単位元に対応している。
/// 葉の値を特別扱いしたいときは、セグ木に半群を乗せるときのように、
/// フラグを持たせれば対応できる(下記の root-leaf の距離の総和の例を参照)。
/// 全体の頂点数が 1 だったときの処理を最後に分ける必要があるので注意。
///
/// 各頂点における頂点の順序を気にした実装になっているため、「各頂点を根として
/// DFS したときの post-order で各頂点を並べ、その列に基数 $b$・法 $m$ の
/// rolling hash を適用したときの値を求めよ」といった問題も処理できるはず。
/// ハッシュ値 $h$ と、部分木サイズ $k$ に対して $(h, b^k\\bmod m)$
/// とかを管理すればよさそう。
///
/// # Complexity
/// $O(n)$ time.
///
/// # Examples
/// ```
/// use nekolib::graph::TreeCata;
///
/// let g = vec![
///     vec![(1, ()), (2, ())],
///     vec![(0, ()), (3, ()), (4, ()), (5, ())],
///     vec![(0, ())],
///     vec![(1, ())],
///     vec![(1, ())],
///     vec![(1, ())],
/// ];
///
/// //      0 -- 2
/// //      |
/// // 4 -- 1 -- 3
/// //      |
/// //      5
///
/// let tc: TreeCata<_> = g.into();
///
/// // max distance
/// let empty = 0;
/// let map = |&x: &usize, _: &()| x + 1;
/// let fold = |&x: &usize, &y: &usize| x.max(y);
/// assert_eq!(tc.each_root(empty, map, fold), [2, 2, 3, 3, 3, 3]);
///
/// // sum of distance
/// let empty = (0, 0);
/// let map = |&(d, c): &(usize, usize), _: &()| (d + c + 1, c + 1);
/// let fold =
///     |&x: &(usize, usize), &y: &(usize, usize)| (x.0 + y.0, x.1 + y.1);
/// assert_eq!(
///     tc.each_root(empty, map, fold)
///         .into_iter()
///         .map(|x| x.0)
///         .collect::<Vec<_>>(),
///     [8, 6, 12, 10, 10, 10]
/// );
///
/// // (sum of root-leaf distance, # of leaves)
/// let empty = ((0, 0), false);
/// let map = |&(x, inner): &((usize, usize), bool), _: &()| {
///     let (x1, x0) = if inner { x } else { (0, 1) };
///     ((x1 + 1 * x0, x0), true)
/// };
/// let fold = |&x: &((usize, usize), bool), &y: &((usize, usize), bool)| {
///     let (x1, x0) = x.0;
///     let (y1, y0) = y.0;
///     ((x1 + y1, x0 + y0), x.1 | y.1)
/// };
/// assert_eq!(
///     tc.each_root(empty, map, fold)
///         .into_iter()
///         .map(|x| if x.1 { x.0 } else { (0, 1) })
///         .collect::<Vec<_>>(),
///     [(7, 4), (5, 4), (9, 3), (7, 3), (7, 3), (7, 3)]
/// );
/// ```
///
/// ```
/// use nekolib::graph::TreeCata;
///
/// let g = vec![
///     vec![(1, 0), (2, 0)],
///     vec![(0, 1), (3, 1), (4, 1), (5, 1)],
///     vec![(0, 2)],
///     vec![(1, 3)],
///     vec![(1, 4)],
///     vec![(1, 5)],
/// ];
///
/// let tc: TreeCata<_> = g.into();
///
/// let empty = "".to_owned();
/// let map = |x: &String, c: &usize| {
///     if x == "" { format!("{}: []", c) } else { format!("{}: [{}]", c, x) }
/// };
/// let fold = |x: &String, y: &String| {
///     if x == "" && y == "" {
///         "".to_owned()
///     } else if x != "" && y != "" {
///         format!("{}, {}", x, y)
///     } else {
///         format!("{}{}", x, y)
///     }
/// };
///
/// let actual = tc
///     .each_root(empty, map, fold)
///     .into_iter()
///     .enumerate()
///     .map(|(i, x)| format!("{}: [{}]", i, x))
///     .collect::<Vec<_>>();
///
/// assert_eq!(
///     actual,
///     [
///         "0: [1: [3: [], 4: [], 5: []], 2: []]",
///         "1: [0: [2: []], 3: [], 4: [], 5: []]",
///         "2: [0: [1: [3: [], 4: [], 5: []]]]",
///         "3: [1: [0: [2: []], 4: [], 5: []]]",
///         "4: [1: [0: [2: []], 3: [], 5: []]]",
///         "5: [1: [0: [2: []], 3: [], 4: []]]",
///     ]
/// );
///
/// let empty = "".to_owned();
/// let map = |x: &String, c: &usize| format!("({} {} )", x, c);
/// let fold = |x: &String, y: &String| format!("{}{}", x, y);
///
/// assert_eq!(tc.each_root(empty, map, fold), [
///     "(( 3 )( 4 )( 5 ) 1 )( 2 )",
///     "(( 2 ) 0 )( 3 )( 4 )( 5 )",
///     "((( 3 )( 4 )( 5 ) 1 ) 0 )",
///     "((( 2 ) 0 )( 4 )( 5 ) 1 )",
///     "((( 2 ) 0 )( 3 )( 5 ) 1 )",
///     "((( 2 ) 0 )( 3 )( 4 ) 1 )",
/// ]);
/// ```
///
/// ## Applications
/// AtCoder における利用例。$(S, \\circ, \\mathrm{id}\_{\\circ}, T, \\star)$
/// の定義と、$\\langle f(0), f(1), \\dots, f(n-1)\\rangle$
/// を用いて答えを得る部分のみ載せている。
///
/// ```ignore
/// // typical90_am
/// let empty = (0, 0);
/// let map = |&x: &(usize, usize), _: &()| (x.0 + x.1 + 1, x.1 + 1);
/// let fold =
///     |&x: &(usize, usize), &y: &(usize, usize)| (x.0 + y.0, x.1 + y.1);
/// let res: usize =
///     tc.each_root(empty, map, fold).into_iter().map(|x| x.0).sum();
/// ```
/// ```ignore
/// // abc220_f
/// let empty = (0, 0);
/// let map = |&(x1, x0): &(usize, usize), _: &()| (x1 + x0 + 1, x0 + 1);
/// let fold = |&(x1, x0): &(usize, usize), &(y1, y0): &(usize, usize)| {
///     (x1 + y1, x0 + y0)
/// };
/// let res: Vec<_> =
///     tc.each_root(empty, map, fold).into_iter().map(|(x1, _)| x1).collect();
/// ```
/// ```ignore
/// // abc222_f
/// let empty = 0;
/// let map = |&x: &i64, &(d, w): &(i64, i64)| x.max(d) + w;
/// let fold = |&x: &i64, &y: &i64| x.max(y);
/// let res = tc.each_root(empty, map, fold);
/// ```
/// ```ignore
/// // abc223_g
/// let empty = false;
/// let map = |&x: &bool, _: &()| !x;
/// let fold = |&x: &bool, &y: &bool| x | y;
/// let res =
///     tc.each_root(empty, map, fold).into_iter().filter(|&x| !x).count();
/// ```
/// ```ignore
/// // s8pc_4_d
/// let empty = (0.0, 0);
/// let map = |&x: &(f64, usize), _: &()| (x.0 + 1.0, 1);
/// let fold = |&x: &(f64, usize), &y: &(f64, usize)| {
///     let v = x.0 * x.1 as f64 + y.0 * y.1 as f64;
///     let d = x.1 + y.1;
///     (v / 1.0_f64.max(d as f64), d)
/// };
/// let res = tc.each_root(empty, map, fold);
/// ```
/// ```ignore
/// // dp_v
/// let empty = 1;
/// let map = |&x: &u64, _: &()| (x + 1) % m;
/// let fold = |&x: &u64, &y: &u64| x * y % m;
/// let res = tc.each_root(empty, map, fold);
/// ```
/// ```ignore
/// // dp_p, abc036_d
/// let empty = (1, 1);
/// let map = |&x: &(u64, u64), _: &()| ((x.0 + x.1) % MOD, x.0);
/// let fold =
///     |&x: &(u64, u64), &y: &(u64, u64)| (x.0 * y.0 % MOD, x.1 * y.1 % MOD);
/// let res: Vec<_> = tc
///     .each_root(empty, map, fold)
///     .into_iter()
///     .map(|x| (x.0 + x.1) % MOD)
///     .collect();
/// assert!(res.iter().all(|&x| x == res[0]));
/// ```
/// ```ignore
/// // abc160_f
/// let mfb = ModFactorialBinom::new(n, MOD);
/// let f = |i| mfb.factorial(i);
/// let fr = |i| mfb.factorial_recip(i);
///
/// let empty = (0, 1, 1);
/// let map = |&x: &(usize, u64, u64), _: &()| {
///     (x.0 + 1, fr(x.0 + 1), x.1 * x.2 % MOD * f(x.0) % MOD)
/// };
/// let fold = |&x: &(usize, u64, u64), &y: &(usize, u64, u64)| {
///     (x.0 + y.0, (x.1 * y.1) % MOD, (x.2 * y.2) % MOD)
/// };
/// let res: Vec<_> = tc
///     .each_root(empty, map, fold)
///     .into_iter()
///     .map(|x| map(&x, &()).2)
///     .collect();
///     
/// // tdpc_tree
/// let res =
///     res.into_iter().fold(0_u64, |x, y| (x + y) % MOD) * mfb.recip(2) % MOD;
/// ```
///
/// # References
/// - <https://qiita.com/Kiri8128/items/a011c90d25911bdb3ed3>
///     - トポロジカルソートで求める話が書かれている。
/// - <https://fsharpforfunandprofit.com/posts/recursive-types-and-folds-1b/>
///     - catamorphism の話が載っている。
pub struct TreeCata<T> {
    par: Vec<Option<(usize, T)>>,
    order: Vec<usize>,
    child: Vec<Vec<(usize, T)>>,
    bound: Vec<usize>,
}

impl<T> From<Vec<Vec<(usize, T)>>> for TreeCata<T> {
    fn from(mut g: Vec<Vec<(usize, T)>>) -> Self {
        let n = g.len();
        let mut par: Vec<_> = (0..n).map(|_| None).collect();
        let mut q: VecDeque<_> = vec![0].into();
        let mut order = vec![];
        let mut child: Vec<_> = (0..n).map(|_| vec![]).collect();
        let mut bound = vec![n; n];

        while let Some(v) = q.pop_front() {
            order.push(v);
            let gv = std::mem::take(&mut g[v]);
            let mut left = true;
            for (nv, w) in gv {
                if nv == 0 || par[nv].is_some() {
                    par[v] = Some((nv, w));
                    left = false;
                } else {
                    if !left && bound[v] == n {
                        bound[v] = nv;
                    }
                    child[v].push((nv, w));
                    q.push_back(nv);
                }
            }
        }

        Self { par, order, child, bound }
    }
}

impl<T> TreeCata<T> {
    pub fn each_root<U: Clone>(
        &self,
        empty: U,
        mut map: impl FnMut(&U, &T) -> U,
        mut fold: impl FnMut(&U, &U) -> U,
    ) -> Vec<U> {
        let n = self.child.len();
        if n == 0 {
            return vec![];
        }

        let mut ascl: Vec<_> = vec![empty.clone(); n];
        let mut ascr: Vec<_> = vec![empty.clone(); n];
        let mut dp: Vec<_> = vec![empty.clone(); n];
        let mut right: Vec<_> = self.bound.iter().map(|&bi| bi < n).collect();
        for &i in self.order[1..].iter().rev() {
            dp[i] = fold(&ascl[i], &ascr[i]);
            let &(p, ref x) = self.par[i].as_ref().unwrap();
            if right[p] {
                ascr[p] = fold(&map(&dp[i], x), &ascr[p]);
                right[p] = self.bound[p] != i;
            } else {
                ascl[p] = fold(&map(&dp[i], x), &ascl[p]);
            }
        }
        dp[0] = fold(&ascl[0], &ascr[0]);

        let mut desc: Vec<_> = vec![empty.clone(); n];
        for &i in &self.order {
            let mut ac = desc[i].clone();
            for &(j, _) in &self.child[i] {
                let x = &self.par[j].as_ref().unwrap().1;
                desc[j] = ac.clone();
                ac = fold(&ac, &map(&dp[j], x));
            }
            let mut ac = empty.clone();
            for &(j, ref x) in self.child[i].iter().rev() {
                desc[j] = map(&fold(&desc[j], &ac), x);
                let x = &self.par[j].as_ref().unwrap().1;
                ac = fold(&map(&dp[j], x), &ac);
                let tmp = fold(&desc[j], &ascr[j]);
                dp[j] = fold(&ascl[j], &tmp);
            }
        }
        dp
    }
}

#[test]
fn test_value() {
    let n = 6;
    let es = vec![(0, 1), (0, 2), (1, 3), (1, 4), (1, 5)];
    let g = {
        let mut g = vec![vec![]; n];
        for &(u, v) in &es {
            g[u].push((v, ()));
            g[v].push((u, ()));
        }
        g
    };
    let tree_cata: TreeCata<_> = g.into();

    // max distance
    let empty = 0;
    let map = |&x: &usize, _: &()| x + 1;
    let fold = |&x: &usize, &y: &usize| x.max(y);
    assert_eq!(tree_cata.each_root(empty, map, fold), [2, 2, 3, 3, 3, 3]);

    // sum of distance
    let empty = (0, 0);
    let map = |&(d, c): &(usize, usize), _: &()| (d + c + 1, c + 1);
    let fold =
        |&x: &(usize, usize), &y: &(usize, usize)| (x.0 + y.0, x.1 + y.1);
    assert_eq!(
        tree_cata
            .each_root(empty, map, fold)
            .into_iter()
            .map(|x| x.0)
            .collect::<Vec<_>>(),
        [8, 6, 12, 10, 10, 10]
    );

    let g = vec![
        vec![(1, 0), (2, 0)],
        vec![(0, 1), (3, 1), (4, 1), (5, 1)],
        vec![(0, 2)],
        vec![(1, 3)],
        vec![(1, 4)],
        vec![(1, 5)],
    ];
    let tree_cata: TreeCata<_> = g.into();

    // string representation
    let empty = "".to_owned();
    let map = |x: &String, c: &usize| {
        if x == "" { format!("{}: []", c) } else { format!("{}: [{}]", c, x) }
    };
    let fold = |x: &String, y: &String| {
        if x == "" && y == "" {
            "".to_owned()
        } else if x != "" && y != "" {
            format!("{}, {}", x, y)
        } else {
            format!("{}{}", x, y)
        }
    };

    let actual = tree_cata
        .each_root(empty, map, fold)
        .into_iter()
        .enumerate()
        .map(|(i, x)| format!("{}: [{}]", i, x))
        .collect::<Vec<_>>();

    let expected = [
        "0: [1: [3: [], 4: [], 5: []], 2: []]",
        "1: [0: [2: []], 3: [], 4: [], 5: []]",
        "2: [0: [1: [3: [], 4: [], 5: []]]]",
        "3: [1: [0: [2: []], 4: [], 5: []]]",
        "4: [1: [0: [2: []], 3: [], 5: []]]",
        "5: [1: [0: [2: []], 3: [], 4: []]]",
    ];
    assert_eq!(actual, expected);
}

#[test]
fn test_order() {
    let empty = || "".to_owned();
    let map = |x: &String, c: &usize| format!("({} {} )", x, c);
    let fold = |x: &String, y: &String| format!("{}{}", x, y);

    // leftmost
    let g = vec![
        vec![(1, 0), (2, 0)],
        vec![(0, 1), (3, 1), (4, 1), (5, 1)],
        vec![(0, 2)],
        vec![(1, 3)],
        vec![(1, 4)],
        vec![(1, 5)],
    ];

    let tree_cata: TreeCata<_> = g.into();
    assert_eq!(tree_cata.each_root(empty(), map, fold), [
        "(( 3 )( 4 )( 5 ) 1 )( 2 )",
        "(( 2 ) 0 )( 3 )( 4 )( 5 )",
        "((( 3 )( 4 )( 5 ) 1 ) 0 )",
        "((( 2 ) 0 )( 4 )( 5 ) 1 )",
        "((( 2 ) 0 )( 3 )( 5 ) 1 )",
        "((( 2 ) 0 )( 3 )( 4 ) 1 )",
    ]);

    // inner (1)
    let g = vec![
        vec![(1, 0), (2, 0)],
        vec![(3, 1), (0, 1), (4, 1), (5, 1)],
        vec![(0, 2)],
        vec![(1, 3)],
        vec![(1, 4)],
        vec![(1, 5)],
    ];

    let tree_cata: TreeCata<_> = g.into();
    assert_eq!(tree_cata.each_root(empty(), map, fold), [
        "(( 3 )( 4 )( 5 ) 1 )( 2 )",
        "( 3 )(( 2 ) 0 )( 4 )( 5 )",
        "((( 3 )( 4 )( 5 ) 1 ) 0 )",
        "((( 2 ) 0 )( 4 )( 5 ) 1 )",
        "((( 2 ) 0 )( 3 )( 5 ) 1 )",
        "((( 2 ) 0 )( 3 )( 4 ) 1 )",
    ]);

    // inner (2)
    let g = vec![
        vec![(1, 0), (2, 0)],
        vec![(3, 1), (4, 1), (0, 1), (5, 1)],
        vec![(0, 2)],
        vec![(1, 3)],
        vec![(1, 4)],
        vec![(1, 5)],
    ];

    let tree_cata: TreeCata<_> = g.into();
    assert_eq!(tree_cata.each_root(empty(), map, fold), [
        "(( 3 )( 4 )( 5 ) 1 )( 2 )",
        "( 3 )( 4 )(( 2 ) 0 )( 5 )",
        "((( 3 )( 4 )( 5 ) 1 ) 0 )",
        "((( 2 ) 0 )( 4 )( 5 ) 1 )",
        "((( 2 ) 0 )( 3 )( 5 ) 1 )",
        "((( 2 ) 0 )( 3 )( 4 ) 1 )",
    ]);

    // rightmost
    let g = vec![
        vec![(1, 0), (2, 0)],
        vec![(3, 1), (4, 1), (5, 1), (0, 1)],
        vec![(0, 2)],
        vec![(1, 3)],
        vec![(1, 4)],
        vec![(1, 5)],
    ];

    let tree_cata: TreeCata<_> = g.into();
    assert_eq!(tree_cata.each_root(empty(), map, fold), [
        "(( 3 )( 4 )( 5 ) 1 )( 2 )",
        "( 3 )( 4 )( 5 )(( 2 ) 0 )",
        "((( 3 )( 4 )( 5 ) 1 ) 0 )",
        "((( 2 ) 0 )( 4 )( 5 ) 1 )",
        "((( 2 ) 0 )( 3 )( 5 ) 1 )",
        "((( 2 ) 0 )( 3 )( 4 ) 1 )",
    ]);
}