Struct nekolib::math::Polynomial

source ·
pub struct Polynomial<M: NttFriendly>(/* private fields */);
Expand description

多項式。

Notations

\gdef\deg{\operatorname{deg}} \gdef\dd{\mathrm{d}} \gdef\dx{{\textstyle{\frac{\dd}{\dd x}}}} \gdef\dy{{\textstyle{\frac{\dd}{\dd y}}}} \gdef\qed{\square}

(f(x),g(x))modxn(f(x), g(x))\bmod x^n(f(x)modxn,g(x)modxn)(f(x)\bmod x^n, g(x)\bmod x^n) の略記として用いる。

f(x)=i=0naixif(x) = \sum_{i=0}^{n} a_i x^i (an0a_{n}\neq 0) に対して deg(f)=n\deg(f) = n とする。 ただし、f(x)=0f(x) = 0 に対しては deg(f)=\deg(f) = -\infty とする。

Implementations§

source§

impl<M: NttFriendly> Polynomial<M>

source

pub fn new() -> Self

f(x)=0f(x) = 0 を返す。

Examples
use nekolib::math::{Mod998244353, Polynomial};
let f = Polynomial::<Mod998244353>::new();
assert!(f.is_zero());
use nekolib::math::{Mod998244353, Polynomial};
type Poly = Polynomial<Mod998244353>;
let f = Poly::new();
assert!(f.is_zero());
source

pub fn recip(&self, len: usize) -> Self

f(x)g(x)1(modxn)f(x)\cdot g(x) \equiv 1\pmod{x^n} なる g(x)modxng(x) \bmod x^n を返す。

Examples
let f: Poly = [1, -1].into();
let g: Poly = [1; 10].into();
assert_eq!(f.recip(10), g);
source

pub fn truncated(self, len: usize) -> Self

f(x)modxnf(x)\bmod x^n を返す。

Examples
let f: Poly = [1, 2, 3, 4, 5].into();
let g: Poly = [1, 2, 3].into();
assert_eq!(f.truncated(3), g);
source

pub fn ref_truncated(&self, len: usize) -> Self

f(x)modxnf(x)\bmod x^n を返す。

Examples
let f: Poly = [1, 2, 3, 4, 5].into();
let g: Poly = [1, 2, 3].into();
assert_eq!(f.ref_truncated(3), g);
assert_eq!(f.ref_truncated(3), g);
source

pub fn truncate(&mut self, len: usize)

f(x)f(x)modxnf(x) \gets f(x) \bmod x^n で更新する。

Examples
let mut f: Poly = [1, 2, 3, 4, 5].into();
let g: Poly = [1, 2, 3].into();
f.truncate(3);
assert_eq!(f, g);
source

pub fn reversed(self) -> Self

f(x)Rxdeg(f)f(1/x)f(x)^{\mathrm{R}} \triangleq x^{\deg(f)}\cdot f(1/x) を返す。ただし f(x)=0f(x) = 0 の場合は 00 を返す。

Examples
let f: Poly = [0, 1, 2].into();
let g: Poly = [2, 1].into();
assert_eq!(f.reversed(), g);
source

pub fn reverse(&mut self)

f(x)f(x)Rf(x) \gets f(x)^{\mathrm{R}} で更新する。

Examples
let mut f: Poly = [0, 1, 2].into();
let g: Poly = [2, 1].into();
f.reverse();
assert_eq!(f, g);
source

pub fn differential(self) -> Self

f(x)f'(x) を返す。

n=deg(f)+1n = \deg(f) + 1 とし、 f(x)=i=0n1aixif(x) = \sum_{i=0}^{n-1} a_i x^i のとき、 f(x)=i=1n1iaixi1=i=0n2(i+1)ai+1xi \begin{aligned} f'(x) &= \sum_{i=1}^{n-1} i\cdot a_i x^{i-1} \\ &= \sum_{i=0}^{n-2} (i+1)\cdot a_{i+1} x^i \end{aligned} となる。ただし、f(x)=0f(x) = 0 のとき f(x)=0f'(x) = 0 である。

Examples
let f: Poly = [1, 1, 1, 1].into();
let g: Poly = [1, 2, 3].into();
assert_eq!(f.differential(), g);
source

pub fn differentiate(&mut self)

f(x)f(x)f(x) \gets f'(x) で更新する。

Examples
let mut f: Poly = [1, 1, 1, 1].into();
let g: Poly = [1, 2, 3].into();
f.differentiate();
assert_eq!(f, g);
source

pub fn integral(self) -> Self

0xf(t)dt\int_0^x f(t)\, \dd{t} を返す。

n=deg(f)+1n = \deg(f) + 1 とし、 f(x)=i=0n1aixif(x) = \sum_{i=0}^{n-1} a_i x^i のとき、 0xf(t)dt=i=0n1(i+1)1aixi+1=i=1niaixi+1 \begin{aligned} \int_0^x f(t)\, \dd{t} &= \sum_{i=0}^{n-1} (i+1)^{-1}\cdot a_i x^{i+1} \\ &= \sum_{i=1}^{n} i\cdot a_i x^{i+1} \end{aligned} となる。ただし、f(x)=0f(x) = 0 のとき 0tf(t)dt=0\int_0^t f(t)\, \dd{t} = 0 である。

Examples
let f: Poly = [1, 2, 3].into();
let g: Poly = [0, 1, 1, 1].into();
assert_eq!(f.integral(), g);
let f = Poly::from([1, -1]).recip(4).integral();
let g = Poly::from([0, 1, 499122177, 332748118, 748683265]);
// \Integrate (1/(1-x)) dx = x + 1/2 x^2 + 1/3 x^3 + 1/4 x^4 + ...
assert_eq!(f, g);
source

pub fn integrate(&mut self)

f(x)0xf(t)dtf(x) \gets \int_0^x f(t)\, \dd{t} で更新する。

Examples
let mut f: Poly = [1, 2, 3].into();
let g: Poly = [0, 1, 1, 1].into();
f.integrate();
assert_eq!(f, g);
source

pub fn log(&self, len: usize) -> Self

[x0]f(x)=1[x^0] f(x) = 1 なる ff に対し、log(f(x))modxn\log(f(x)) \bmod x^n を返す。

log(1f(x))=n=1f(x)nn\log(1-f(x)) = -\sum_{n=1}^{\infty} \frac{f(x)^n}{n} などで定義される。 ddxlog(f(x))=f(t)f(t)1\dx\log(f(x)) = f'(t)\cdot f(t)^{-1}log(f(x)g(x))=log(f(x))+log(g(x))\log(f(x)g(x)) = \log(f(x))+\log(g(x)) などが成り立つ。

また、[x0]log(f(x))=0[x^0]\log(f(x)) = 0 となる。

Examples
let f: Poly = [1, 1].into();
let g: Poly = [0, 1, 499122176, 332748118, 249561088].into();
// log(1+x) = x - 1/2 x^2 + 1/3 x^3 - 1/4 x^4 + ...
assert_eq!(f.log(5), g);
assert_eq!(f.log(5).differential(), [1, -1, 1, -1].into());
source

pub fn exp(&self, len: usize) -> Self

[x0]f(x)=0[x^0] f(x) = 0 なる ff に対し、exp(f(x))modxn\exp(f(x)) \bmod x^n を返す。

exp(f(x))=n=0f(x)nn!\exp(f(x)) = \sum_{n=0}^{\infty} \frac{f(x)^n}{n!} によって定義される。 ddxexp(f(x))=exp(f(x))ddxf(x)\dx \exp(f(x)) = \exp(f(x))\cdot \dx f(x)exp(f(x)+g(x))=exp(f(x))exp(g(x))\exp(f(x)+g(x)) = \exp(f(x))\exp(g(x)) などが成り立つ。

また、ifi(x)=exp(ilog(fi(x)))\prod_i f_i(x) = \exp(\sum_i \log(f_i(x)))[x0]exp(f(x))=1[x^0] \exp(f(x)) = 1 も成り立つ。

Examples
let f: Poly = [0, 1].into();
let g: Poly = [1, 1, 499122177, 166374059, 291154603].into();
// exp(x) = 1 + x + 1/2 x^2 + 1/6 x^3 + 1/24 x^4 + ...
assert_eq!(f.exp(5), g);
source

pub fn pow<I: Into<StaticModInt<M>>>(&self, k: I, len: usize) -> Self

f(x)kmodxnf(x)^k \bmod x^n を返す。

Ideas

自明なケースとして、 k=0k = 0 のときは 11 である。 f(x)=0f(x) = 0 のときは 00 である。00=10^0 = 1 としている。

それ以外のとき、f(x)=alxl(1+g(x))f(x) = a_l x^l \cdot (1+g(x)) と書ける。 f(x)k=(alxl(1+g(x)))k=alkxlkexp(klog(1+g(x))) \begin{aligned} f(x)^k &= (a_l x^l \cdot (1+g(x)))^k \\ &= a_l^k x^{lk} \cdot \exp(k\log(1+g(x))) \end{aligned}

によって計算できる。log\log の引数の定数項が 11 であることと、exp\exp の引数の定数項が 00 になっていることに注意せよ。

Examples
let f: Poly = [1, 1].into();
let g: Poly = [1, 4, 6, 4, 1].into();
// (1+x)^4 = 1 + 4x + 6x^2 + 4x^3 + x^4
assert_eq!(f.pow(4, 10), g);
let f: Poly = [0, 0, 2, 6].into();
let g = Poly::from([64, 1152, 8640, 34560]) << 12;
// (2x^2+6x^3)^6
// = (2x^2 (1 + 3x))^6
// = 64x^12 (1 + 18x + 135x^2 + 540x^3 + ...)
// = 64x^12 + 1152x^13 + 8640x^14 + 34560x^15 + ...
assert_eq!(f.pow(6, 16), g);
source

pub fn circular(&self, im: &Self, len: usize) -> (Self, Self)

[x0]f(x)=0[x^0] f(x) = 0 かつ [x0]g(x)=0[x^0] g(x) = 0 なる h(x)=f(x)+ig(x)h(x) = f(x)+ig(x) に対して (cos(h(x)),sin(h(x)))modxn(\cos(h(x)), \sin(h(x))) \bmod x^n を返す。

exp(f(x)+ig(x))=exp(f(x))(cos(g(x))+isin(g(x)))\exp(f(x) + ig(x)) = \exp(f(x))\cdot(\cos(g(x)) + i\sin(g(x))) から定義される。

Examples
let zero = Poly::new();
let f: Poly = [0, 1].into();
let g_re: Poly = [1, 0, -499122177, 0, 291154603, 0].into();
let g_im: Poly = [0, 1, 0, -166374059, 0, 856826403].into();
// cos(x) = 1 - 1/2 x^2 + 1/24 x^4 - ...
// sin(x) = x - 1/6 x^3 + 1/120 x^5 - ...
assert_eq!(zero.circular(&f, 6), (g_re, g_im));
source

pub fn cos(&self, len: usize) -> Self

cos(f(x))modxn\cos(f(x)) \bmod x^n を返す。

Examples
let zero = Poly::new();
let f: Poly = [0, 1].into();
let g: Poly = [1, 0, -499122177, 0, 291154603, 0].into();
// cos(x) = 1 - 1/2 x^2 + 1/24 x^4 - ...
assert_eq!(f.cos(6), g);
source

pub fn sin(&self, len: usize) -> Self

sin(f(x))modxn\sin(f(x)) \bmod x^n を返す。

Examples
let zero = Poly::new();
let f: Poly = [0, 1].into();
let g: Poly = [0, 1, 0, -166374059, 0, 856826403].into();
// sin(x) = x - 1/6 x^3 + 1/120 x^5 - ...
assert_eq!(f.sin(6), g);
source

pub fn tan(&self, len: usize) -> Self

tan(f(x))modxn\tan(f(x)) \bmod x^n を返す。

Examples
let zero = Poly::new();
let f: Poly = [0, 1].into();
let g: Poly = [0, 1, 0, 332748118, 0, 732045859].into();
// tan(x) = x + 1/3 x^3 + 2/15 x^5 ...
assert_eq!(f.tan(6), g);
source

pub fn polyeqn(self, n: usize, f_dfr: impl Fn(&Self, usize) -> Self) -> Self

self を初期解とし、f(y)=0f(y) = 0 を満たす yy を求める。

f_dfr(y,n)(y, n) に対して f(y)f(y)1modxnf(y)\cdot f'(y)^{-1} \bmod x^n を返すとする。

Newton 法による yk+1=(ykf(yk)f(yk)1)modx2ky_{k+1} = (y_k - f(y_k)\cdot f'(y_k)^{-1}) \bmod x^{2^k} に基づき、 y(f(y)f(y)1)modx2ky\xleftarrow{-} (f(y)\cdot f'(y)^{-1}) \bmod x^{2^k} で更新する。

Ideas

多項式 φ(y)\varphi(y)gg のまわりでの Taylor 展開は、 φ(y)=i=0deg(φ)φi(yg)i \varphi(y) = \sum_{i=0}^{\deg(\varphi)} \varphi_i\cdot (y-g)^i として定義される。各係数 φi\varphi_i は一意に定まり、Taylor 係数と呼ばれる。

微分して y=gy=g を代入することなどで、ある多項式 ψ\psi を用いて以下のように書ける。 φ(y)=φ(g)+(ddyφ(g))(yg)+ψ(y)(yg)2. \varphi(y) = \varphi(g) + \left(\dy\varphi(g)\right)\cdot (y-g) + \psi(y)\cdot (y-g)^2.

さて、f(yk)0(modx2k)f(y_k)\equiv 0 \pmod{x^{2^k}} なる yky_k が得られており、かつ ddyf(yk)\dy f(y_k) が逆元を持つとき、 yk+1ykf(yk)ddyf(yk)1modx2k+1 y_{k+1} \triangleq y_k - f(y_k)\cdot \dy f(y_k)^{-1} \bmod {x^{2^{k+1}}} で得られる yk+1y_{k+1} によって f(yk+1)0(modx2k+1)f(y_{k+1}) \equiv 0\pmod{x^{2^{k+1}}} が成り立つことを示す。

Proof

まず、f(yk)(modx2k)f(y_k) \equiv \pmod{x^{2^k}} であることと、x2kx^{2^k}x2k+1x^{2^{k+1}} を割り切ることから yk+1=yk(modx2k)y_{k+1} = y_k \pmod{x^{2^k}} は成り立つ。 これより、(yk+1yk)2(modx2k+1)(y_{k+1} - y_k)^2 \pmod {x^{2^{k+1}}} も従う。 さて、多項式 ffyky_k のまわりでの Taylor 展開から、ある ψ\psi に対して f(y)=f(yk)+(ddyf(yk))(yyk)+ψ(y)(yyk)2 f(y) = f(y_k) + \left(\dy f(y_k)\right)\cdot (y-y_k) + \psi(y)\cdot (y-y_k)^2 が成り立つので、 f(y)f(yk)+(ddyf(yk))(yyk)0(modx2k+1) f(y) \equiv f(y_k) + \left(\dy f(y_k)\right)\cdot (y-y_k) \equiv 0 \pmod {x^{2^{k+1}}} となる。yy について整理して yykf(yk)ddyf(yk)1(modx2k+1) y \equiv y_k -f(y_k)\cdot \dy f(y_k)^{-1} \pmod{x^{2^{k+1}}} を得る。\qed

なお、一般に、環 RR において、xRx\in RyRy\in R を法とする逆元を持つことは、 yiy^i (iN1i\in\N_{\ge 1}) を法とする逆元を持つことと同値である。

よって、上記の手続きを繰り返すことにより、yy を任意の次数で求めることができる。 x2kx2k+1x^{2^k}\to x^{2^{k+1}} としていた箇所は、一般に xlx2lx^l\to x^{2l} と置き換えることも可能。 実際には、定数項のみを与え、x20=xx^{2^0}=x を法として始めることが多いであろう。

References
  • Von Zur Gathen, Joachim, and Jürgen Gerhard. Modern computer algebra. Cambridge university press, 2013.
Examples
let one = Poly::from([1]);
let two = Poly::from([2]);
let three = Poly::from([3]);
let catalan = |y: &Poly, n| {
    // c(x) = 1 + x c(x)^2
    // f(y) = x y^2 - y + 1
    // f(y) / f'(y) = (x y^2 - y + 1) / (2xy - 1)
    let f = ((y * y) << 1) - y + &one;
    let df = ((y * &two) << 1) - &one;
    (f.truncated(n) * df.recip(n)).truncated(n)
};
let f = Poly::from([1]).polyeqn(6, catalan);
let g = Poly::from([1, 1, 2, 5, 14, 42]);
assert_eq!(f, g);
source

pub fn fode(self, n: usize, f_df: impl Fn(&Self, usize) -> (Self, Self)) -> Self

self を初期解とし、y=f(y,x)y' = f(y, x) を満たす y(x)y(x) を求める。

f_df(y,n)(y, n) に対して (f(y,x),f(y,x))modxn(f(y, x), f'(y, x)) \bmod x^n を返すとする。

Ideas

基本的な方針は Newton 法と同じである。Taylor 展開を用いて二次収束する更新式を得る。

yyk(modx2k)y\equiv y_k \pmod{x^{2^k}} を満たす yk=i=02k1aixiy_k = \sum_{i=0}^{2^k-1} a_i x^i が得られているとする。 このとき、ある ψ(y)\psi(y) が存在して、f(y,x)f(y, x)yky_k のまわりでの Taylor 展開が f(y,x)=f(yk,x)+(ddyf(yk,x))(yyk)+ψ(y)(yyk)2 f(y, x) = f(y_k, x) + \left(\dy f(y_k, x)\right)\cdot (y-y_k) + \psi(y)\cdot (y-y_k)^2 と書ける。仮定より yyk0(modx2k)y-y_k\equiv 0\pmod{x^{2^k}} なので、 f(y,x)f(yk,x)+(ddyf(yk,x))(yyk)(modx2k+1) f(y, x) \equiv f(y_k, x) + \left(\dy f(y_k, x)\right)\cdot (y-y_k) \pmod{x^{2^{k+1}}} となる。また、y=yk+(yyk)y' = y_k' + (y' - y_k') と書けるので、y=f(y,x)y' = f(y, x) より yk+(yyk)f(yk,x)+(ddyf(yk,x))(yyk)(modx2k+1) y_k' + (y' - y_k') \equiv f(y_k, x) + \left(\dy f(y_k, x)\right)\cdot (y-y_k) \pmod{x^{2^{k+1}}} が成り立つ。

ここで ek=yyke_k = y-y_k とおくと、 yk+ekf(yk,x)+(ddyf(yk,x))ek(modx2k+1) y_k' + e_k' \equiv f(y_k, x) + \left(\dy f(y_k, x)\right)\cdot e_k \pmod{x^{2^{k+1}}} が成り立つ。eke_k について整理して ek+(ddyf(yk,x))g(x)ekf(yk,x)yk(ddy)h(x)(modx2k+1) e_k' + \underbrace{\left(-\dy f(y_k, x)\right)}_{g(x)}\cdot e_k \equiv \underbrace{f(y_k, x) - y_k'\vphantom{\left(\dy\right)}}_{h(x)} \pmod{x^{2^{k+1}}} を得る。ek+g(x)ekh(x)e_k' + g(x)\cdot e_k \equiv h(x) の形式の微分方程式が得られたので、これについて考える。

μ(x)=exp(0xg(t)dt)\mu(x) = \exp(\int_0^x g(t)\, \dd{t}) を両辺に掛けて1ekμ(x)+g(x)ekμ(x)h(x)μ(x)ddx(ekμ(x))h(x)μ(x) \begin{aligned} e_k'\cdot\mu(x) + g(x)\cdot e_k\cdot\mu(x) &\equiv h(x) \mu(x) \\ \dx \left(e_k\cdot\mu(x)\right) &\equiv h(x) \mu(x) \\ % e_k\cdot \mu(x) &\equiv \int_0^x h(t)\mu(t)\, \dd{t} + C \\ % e_k &\equiv \frac{1}{\mu(x)}\left(\int_0^x h(t)\mu(t)\, \dd{t} + C\right) \\ \end{aligned} より、 ek1μ(x)(0xh(t)μ(t)dt+C)(modx2k+1) e_k \equiv \frac{1}{\mu(x)}\left(\int_0^x h(t)\mu(t)\, \dd{t} + C\right) \pmod{x^{2^{k+1}}} を得る。exp\exp の性質から μ(x)1(modx)\mu(x) \equiv 1 \pmod{x} であり、Cμ(x)1C(modx)C\mu(x)^{-1} \equiv C\pmod{x} となる。 ところで、ek=yyk0(modx2k)e_k = y-y_k\equiv 0 \pmod{x^{2^k}} であったため、C=0C = 0 となる必要がある。

さて、y=yk+ek(modx2k+1)y = y_k + e_k \pmod{x^{2^{k+1}}} なので、yk+1yk+eky_{k+1} \triangleq y_k + e_k とすると、yyk+1(modx2k+1)y \equiv y_{k+1} \pmod{x^{2^{k+1}}} を得られる。 すなわち、以下で更新することになる。

gk=ddyf(yk,x)modx2k+1μk=exp(0xg(t)dt)modx2k+1ek=1μk0x(f(yk,x)yk)μk)dxmodx2k+1yk+1=yk+ek \begin{aligned} g_k &= -\dy f(y_k, x) \bmod x^{2^{k+1}} \\ \mu_k &= \exp\left(\int_0^x g(t)\, \dd{t}\right) \bmod x^{2^{k+1}}\\ e_k &= \frac{1}{\mu_k}\int_0^x \big(f(y_k, x)-y_k')\cdot \mu_k\big)\, \dd{x} \bmod x^{2^{k+1}} \\ y_{k+1} &= y_k + e_k \end{aligned}

実際には yy を immutable で管理して y+eky\xleftarrow{+}e_k の更新をしている。

References
  • Fateman, Richard J. “Series solutions of algebraic and differential equations: a comparison of linear and quadratic algebraic convergence.” In Proceedings of the ACM-SIGSAM 1989 international symposium on Symbolic and algebraic computation, pp. 11–16. 1989.
  • Von Zur Gathen, Joachim, and Jürgen Gerhard. Modern computer algebra. Cambridge university press, 2013.
Examples
let x: Poly = [0, 1].into();
let one: Poly = [1].into();
let three: Poly = [3].into();
let f_df = |y: &Poly, n| {
    let d = y - &x;
    // (f(y), f'(y)) = ((y-x)^3+1, 3(y-x)^2)
    let dd = (&d * &d).truncated(n);
    ((&dd * &d + &one).truncated(n), &dd * &three)
};

let n = 4;
let y = Poly::from([2]).fode(n + 1, f_df);

// y = x + 2/sqrt(1-8x) = 2 + 9x + 48x^2 + 320x^3 + 2240x^4 + ...
assert_eq!(y, [2, 9, 48, 320, 2240].into());
assert_eq!(f_df(&y, n).0, y.differential());

  1. exp\exp の引数の定数項は 00 となる必要がある。 

source

pub fn get(&self, i: usize) -> StaticModInt<M>

[xi]f(x)[x^i] f(x) を返す。

Examples
let f: Poly = [5, 0, 7].into();
assert_eq!(f.get(0).get(), 5);
assert_eq!(f.get(1).get(), 0);
assert_eq!(f.get(2).get(), 7);
assert_eq!(f.get(3).get(), 0);
assert_eq!(f.get(4).get(), 0);
source

pub fn eval(&self, t: impl Into<StaticModInt<M>>) -> StaticModInt<M>

source

pub fn into_inner(self) -> Vec<StaticModInt<M>>

([xi]f(x))i=0deg(f)([x^i] f(x))_{i=0}^{\deg(f)} を返す。

source

pub fn fft_butterfly(&mut self, len: usize)

Fω[f]F_{\omega}[f] を返す。

FF とか ω\omega とかの定義をちゃんと書く。butterfly をどう書くか悩ましい。

source

pub fn fft_inv_butterfly(&mut self, len: usize)

Fω1[f]F_{\omega}^{-1}[f] を返す。

source

pub fn fft_butterfly_double(&mut self, to_len: usize)

Fω2[f]F_{\omega^2}[f]Fω[f]F_{\omega}[f] で更新する。

source

pub fn is_zero(&self) -> bool

f(x)=0f(x) = 0 を返す。

source

pub fn len(&self) -> usize

deg(f)1\deg(f)-1 を返す。ただし f(x)=0f(x) = 0 のときは 00 を返す。

source

pub fn div_mod(&self, other: &Polynomial<M>) -> (Self, Self)

(f(x)/g(x),f(x)modg(x))(f(x) / g(x), f(x) \bmod g(x)) を返す。

f(x)/g(x)f(x) / g(x)f(x)g(x)1f(x)\cdot g(x)^{-1} ではなく多項式としての除算である。

source

pub fn div_nth(&self, other: &Polynomial<M>, n: usize) -> StaticModInt<M>

[xn]f(x)g(x)1[x^n] f(x) \cdot g(x)^{-1} を返す。

Trait Implementations§

source§

impl<'a, M: NttFriendly> Add<&'a Polynomial<M>> for &'a Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the + operator.
source§

fn add(self, other: &'a Polynomial<M>) -> Polynomial<M>

Performs the + operation. Read more
source§

impl<'a, M: NttFriendly> Add<&'a Polynomial<M>> for Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the + operator.
source§

fn add(self, other: &'a Polynomial<M>) -> Polynomial<M>

Performs the + operation. Read more
source§

impl<'a, M: NttFriendly> Add<&'a StaticModInt<M>> for &'a Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the + operator.
source§

fn add(self, other: &'a StaticModInt<M>) -> Polynomial<M>

Performs the + operation. Read more
source§

impl<'a, M: NttFriendly> Add<&'a StaticModInt<M>> for Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the + operator.
source§

fn add(self, other: &'a StaticModInt<M>) -> Polynomial<M>

Performs the + operation. Read more
source§

impl<'a, M: NttFriendly> Add<Polynomial<M>> for &'a Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the + operator.
source§

fn add(self, other: Polynomial<M>) -> Polynomial<M>

Performs the + operation. Read more
source§

impl<M: NttFriendly> Add<Polynomial<M>> for Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the + operator.
source§

fn add(self, other: Polynomial<M>) -> Polynomial<M>

Performs the + operation. Read more
source§

impl<'a, M: NttFriendly> Add<StaticModInt<M>> for &'a Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the + operator.
source§

fn add(self, other: StaticModInt<M>) -> Polynomial<M>

Performs the + operation. Read more
source§

impl<M: NttFriendly> Add<StaticModInt<M>> for Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the + operator.
source§

fn add(self, other: StaticModInt<M>) -> Polynomial<M>

Performs the + operation. Read more
source§

impl<'a, M: NttFriendly> AddAssign<&'a Polynomial<M>> for Polynomial<M>

source§

fn add_assign(&mut self, other: &'a Polynomial<M>)

Performs the += operation. Read more
source§

impl<'a, M: NttFriendly> AddAssign<&'a StaticModInt<M>> for Polynomial<M>

source§

fn add_assign(&mut self, other: &'a StaticModInt<M>)

Performs the += operation. Read more
source§

impl<M: NttFriendly> AddAssign<Polynomial<M>> for Polynomial<M>

source§

fn add_assign(&mut self, other: Polynomial<M>)

Performs the += operation. Read more
source§

impl<M: NttFriendly> AddAssign<StaticModInt<M>> for Polynomial<M>

source§

fn add_assign(&mut self, other: StaticModInt<M>)

Performs the += operation. Read more
source§

impl<'a, M: NttFriendly> BitAnd<&'a Polynomial<M>> for &'a Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the & operator.
source§

fn bitand(self, other: &'a Polynomial<M>) -> Polynomial<M>

Performs the & operation. Read more
source§

impl<'a, M: NttFriendly> BitAnd<&'a Polynomial<M>> for Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the & operator.
source§

fn bitand(self, other: &'a Polynomial<M>) -> Polynomial<M>

Performs the & operation. Read more
source§

impl<'a, M: NttFriendly> BitAnd<&'a StaticModInt<M>> for &'a Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the & operator.
source§

fn bitand(self, other: &'a StaticModInt<M>) -> Polynomial<M>

Performs the & operation. Read more
source§

impl<'a, M: NttFriendly> BitAnd<&'a StaticModInt<M>> for Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the & operator.
source§

fn bitand(self, other: &'a StaticModInt<M>) -> Polynomial<M>

Performs the & operation. Read more
source§

impl<'a, M: NttFriendly> BitAnd<Polynomial<M>> for &'a Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the & operator.
source§

fn bitand(self, other: Polynomial<M>) -> Polynomial<M>

Performs the & operation. Read more
source§

impl<M: NttFriendly> BitAnd<Polynomial<M>> for Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the & operator.
source§

fn bitand(self, other: Polynomial<M>) -> Polynomial<M>

Performs the & operation. Read more
source§

impl<'a, M: NttFriendly> BitAnd<StaticModInt<M>> for &'a Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the & operator.
source§

fn bitand(self, other: StaticModInt<M>) -> Polynomial<M>

Performs the & operation. Read more
source§

impl<M: NttFriendly> BitAnd<StaticModInt<M>> for Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the & operator.
source§

fn bitand(self, other: StaticModInt<M>) -> Polynomial<M>

Performs the & operation. Read more
source§

impl<'a, M: NttFriendly> BitAndAssign<&'a Polynomial<M>> for Polynomial<M>

source§

fn bitand_assign(&mut self, other: &'a Polynomial<M>)

Performs the &= operation. Read more
source§

impl<'a, M: NttFriendly> BitAndAssign<&'a StaticModInt<M>> for Polynomial<M>

source§

fn bitand_assign(&mut self, other: &'a StaticModInt<M>)

Performs the &= operation. Read more
source§

impl<M: NttFriendly> BitAndAssign<Polynomial<M>> for Polynomial<M>

source§

fn bitand_assign(&mut self, other: Polynomial<M>)

Performs the &= operation. Read more
source§

impl<M: NttFriendly> BitAndAssign<StaticModInt<M>> for Polynomial<M>

source§

fn bitand_assign(&mut self, other: StaticModInt<M>)

Performs the &= operation. Read more
source§

impl<M: Clone + NttFriendly> Clone for Polynomial<M>

source§

fn clone(&self) -> Polynomial<M>

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl<M: NttFriendly> Debug for Polynomial<M>

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl<M: NttFriendly> Display for Polynomial<M>

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl<'a, M: NttFriendly> Div<&'a Polynomial<M>> for &'a Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the / operator.
source§

fn div(self, other: &'a Polynomial<M>) -> Polynomial<M>

Performs the / operation. Read more
source§

impl<'a, M: NttFriendly> Div<&'a Polynomial<M>> for Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the / operator.
source§

fn div(self, other: &'a Polynomial<M>) -> Polynomial<M>

Performs the / operation. Read more
source§

impl<'a, M: NttFriendly> Div<&'a StaticModInt<M>> for &'a Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the / operator.
source§

fn div(self, other: &'a StaticModInt<M>) -> Polynomial<M>

Performs the / operation. Read more
source§

impl<'a, M: NttFriendly> Div<&'a StaticModInt<M>> for Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the / operator.
source§

fn div(self, other: &'a StaticModInt<M>) -> Polynomial<M>

Performs the / operation. Read more
source§

impl<'a, M: NttFriendly> Div<Polynomial<M>> for &'a Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the / operator.
source§

fn div(self, other: Polynomial<M>) -> Polynomial<M>

Performs the / operation. Read more
source§

impl<M: NttFriendly> Div<Polynomial<M>> for Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the / operator.
source§

fn div(self, other: Polynomial<M>) -> Polynomial<M>

Performs the / operation. Read more
source§

impl<'a, M: NttFriendly> Div<StaticModInt<M>> for &'a Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the / operator.
source§

fn div(self, other: StaticModInt<M>) -> Polynomial<M>

Performs the / operation. Read more
source§

impl<M: NttFriendly> Div<StaticModInt<M>> for Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the / operator.
source§

fn div(self, other: StaticModInt<M>) -> Polynomial<M>

Performs the / operation. Read more
source§

impl<'a, M: NttFriendly> DivAssign<&'a Polynomial<M>> for Polynomial<M>

source§

fn div_assign(&mut self, other: &'a Polynomial<M>)

Performs the /= operation. Read more
source§

impl<'a, M: NttFriendly> DivAssign<&'a StaticModInt<M>> for Polynomial<M>

source§

fn div_assign(&mut self, other: &'a StaticModInt<M>)

Performs the /= operation. Read more
source§

impl<M: NttFriendly> DivAssign<Polynomial<M>> for Polynomial<M>

source§

fn div_assign(&mut self, other: Polynomial<M>)

Performs the /= operation. Read more
source§

impl<M: NttFriendly> DivAssign<StaticModInt<M>> for Polynomial<M>

source§

fn div_assign(&mut self, other: StaticModInt<M>)

Performs the /= operation. Read more
source§

impl<'a, M: NttFriendly> From<&'a [StaticModInt<M>]> for Polynomial<M>

source§

fn from(buf: &'a [StaticModInt<M>]) -> Self

Converts to this type from the input type.
source§

impl<'a, M: NttFriendly> From<&'a [i128]> for Polynomial<M>

source§

fn from(buf: &'a [i128]) -> Self

Converts to this type from the input type.
source§

impl<'a, M: NttFriendly> From<&'a [i16]> for Polynomial<M>

source§

fn from(buf: &'a [i16]) -> Self

Converts to this type from the input type.
source§

impl<'a, M: NttFriendly> From<&'a [i32]> for Polynomial<M>

source§

fn from(buf: &'a [i32]) -> Self

Converts to this type from the input type.
source§

impl<'a, M: NttFriendly> From<&'a [i64]> for Polynomial<M>

source§

fn from(buf: &'a [i64]) -> Self

Converts to this type from the input type.
source§

impl<'a, M: NttFriendly> From<&'a [i8]> for Polynomial<M>

source§

fn from(buf: &'a [i8]) -> Self

Converts to this type from the input type.
source§

impl<'a, M: NttFriendly> From<&'a [isize]> for Polynomial<M>

source§

fn from(buf: &'a [isize]) -> Self

Converts to this type from the input type.
source§

impl<'a, M: NttFriendly> From<&'a [u128]> for Polynomial<M>

source§

fn from(buf: &'a [u128]) -> Self

Converts to this type from the input type.
source§

impl<'a, M: NttFriendly> From<&'a [u16]> for Polynomial<M>

source§

fn from(buf: &'a [u16]) -> Self

Converts to this type from the input type.
source§

impl<'a, M: NttFriendly> From<&'a [u32]> for Polynomial<M>

source§

fn from(buf: &'a [u32]) -> Self

Converts to this type from the input type.
source§

impl<'a, M: NttFriendly> From<&'a [u64]> for Polynomial<M>

source§

fn from(buf: &'a [u64]) -> Self

Converts to this type from the input type.
source§

impl<'a, M: NttFriendly> From<&'a [u8]> for Polynomial<M>

source§

fn from(buf: &'a [u8]) -> Self

Converts to this type from the input type.
source§

impl<'a, M: NttFriendly> From<&'a [usize]> for Polynomial<M>

source§

fn from(buf: &'a [usize]) -> Self

Converts to this type from the input type.
source§

impl<M: NttFriendly, const N: usize> From<[StaticModInt<M>; N]> for Polynomial<M>

source§

fn from(buf: [StaticModInt<M>; N]) -> Self

Converts to this type from the input type.
source§

impl<M: NttFriendly, const N: usize> From<[i128; N]> for Polynomial<M>

source§

fn from(buf: [i128; N]) -> Self

Converts to this type from the input type.
source§

impl<M: NttFriendly, const N: usize> From<[i16; N]> for Polynomial<M>

source§

fn from(buf: [i16; N]) -> Self

Converts to this type from the input type.
source§

impl<M: NttFriendly, const N: usize> From<[i32; N]> for Polynomial<M>

source§

fn from(buf: [i32; N]) -> Self

Converts to this type from the input type.
source§

impl<M: NttFriendly, const N: usize> From<[i64; N]> for Polynomial<M>

source§

fn from(buf: [i64; N]) -> Self

Converts to this type from the input type.
source§

impl<M: NttFriendly, const N: usize> From<[i8; N]> for Polynomial<M>

source§

fn from(buf: [i8; N]) -> Self

Converts to this type from the input type.
source§

impl<M: NttFriendly, const N: usize> From<[isize; N]> for Polynomial<M>

source§

fn from(buf: [isize; N]) -> Self

Converts to this type from the input type.
source§

impl<M: NttFriendly, const N: usize> From<[u128; N]> for Polynomial<M>

source§

fn from(buf: [u128; N]) -> Self

Converts to this type from the input type.
source§

impl<M: NttFriendly, const N: usize> From<[u16; N]> for Polynomial<M>

source§

fn from(buf: [u16; N]) -> Self

Converts to this type from the input type.
source§

impl<M: NttFriendly, const N: usize> From<[u32; N]> for Polynomial<M>

source§

fn from(buf: [u32; N]) -> Self

Converts to this type from the input type.
source§

impl<M: NttFriendly, const N: usize> From<[u64; N]> for Polynomial<M>

source§

fn from(buf: [u64; N]) -> Self

Converts to this type from the input type.
source§

impl<M: NttFriendly, const N: usize> From<[u8; N]> for Polynomial<M>

source§

fn from(buf: [u8; N]) -> Self

Converts to this type from the input type.
source§

impl<M: NttFriendly, const N: usize> From<[usize; N]> for Polynomial<M>

source§

fn from(buf: [usize; N]) -> Self

Converts to this type from the input type.
source§

impl<M: NttFriendly> From<Vec<StaticModInt<M>, Global>> for Polynomial<M>

source§

fn from(buf: Vec<StaticModInt<M>>) -> Self

Converts to this type from the input type.
source§

impl<M: NttFriendly> From<Vec<i128, Global>> for Polynomial<M>

source§

fn from(buf: Vec<i128>) -> Self

Converts to this type from the input type.
source§

impl<M: NttFriendly> From<Vec<i16, Global>> for Polynomial<M>

source§

fn from(buf: Vec<i16>) -> Self

Converts to this type from the input type.
source§

impl<M: NttFriendly> From<Vec<i32, Global>> for Polynomial<M>

source§

fn from(buf: Vec<i32>) -> Self

Converts to this type from the input type.
source§

impl<M: NttFriendly> From<Vec<i64, Global>> for Polynomial<M>

source§

fn from(buf: Vec<i64>) -> Self

Converts to this type from the input type.
source§

impl<M: NttFriendly> From<Vec<i8, Global>> for Polynomial<M>

source§

fn from(buf: Vec<i8>) -> Self

Converts to this type from the input type.
source§

impl<M: NttFriendly> From<Vec<isize, Global>> for Polynomial<M>

source§

fn from(buf: Vec<isize>) -> Self

Converts to this type from the input type.
source§

impl<M: NttFriendly> From<Vec<u128, Global>> for Polynomial<M>

source§

fn from(buf: Vec<u128>) -> Self

Converts to this type from the input type.
source§

impl<M: NttFriendly> From<Vec<u16, Global>> for Polynomial<M>

source§

fn from(buf: Vec<u16>) -> Self

Converts to this type from the input type.
source§

impl<M: NttFriendly> From<Vec<u32, Global>> for Polynomial<M>

source§

fn from(buf: Vec<u32>) -> Self

Converts to this type from the input type.
source§

impl<M: NttFriendly> From<Vec<u64, Global>> for Polynomial<M>

source§

fn from(buf: Vec<u64>) -> Self

Converts to this type from the input type.
source§

impl<M: NttFriendly> From<Vec<u8, Global>> for Polynomial<M>

source§

fn from(buf: Vec<u8>) -> Self

Converts to this type from the input type.
source§

impl<M: NttFriendly> From<Vec<usize, Global>> for Polynomial<M>

source§

fn from(buf: Vec<usize>) -> Self

Converts to this type from the input type.
source§

impl<'a, M: NttFriendly> Mul<&'a Polynomial<M>> for &'a Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the * operator.
source§

fn mul(self, other: &'a Polynomial<M>) -> Polynomial<M>

Performs the * operation. Read more
source§

impl<'a, M: NttFriendly> Mul<&'a Polynomial<M>> for Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the * operator.
source§

fn mul(self, other: &'a Polynomial<M>) -> Polynomial<M>

Performs the * operation. Read more
source§

impl<'a, M: NttFriendly> Mul<&'a StaticModInt<M>> for &'a Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the * operator.
source§

fn mul(self, other: &'a StaticModInt<M>) -> Polynomial<M>

Performs the * operation. Read more
source§

impl<'a, M: NttFriendly> Mul<&'a StaticModInt<M>> for Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the * operator.
source§

fn mul(self, other: &'a StaticModInt<M>) -> Polynomial<M>

Performs the * operation. Read more
source§

impl<'a, M: NttFriendly> Mul<Polynomial<M>> for &'a Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the * operator.
source§

fn mul(self, other: Polynomial<M>) -> Polynomial<M>

Performs the * operation. Read more
source§

impl<M: NttFriendly> Mul<Polynomial<M>> for Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the * operator.
source§

fn mul(self, other: Polynomial<M>) -> Polynomial<M>

Performs the * operation. Read more
source§

impl<'a, M: NttFriendly> Mul<StaticModInt<M>> for &'a Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the * operator.
source§

fn mul(self, other: StaticModInt<M>) -> Polynomial<M>

Performs the * operation. Read more
source§

impl<M: NttFriendly> Mul<StaticModInt<M>> for Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the * operator.
source§

fn mul(self, other: StaticModInt<M>) -> Polynomial<M>

Performs the * operation. Read more
source§

impl<'a, M: NttFriendly> MulAssign<&'a Polynomial<M>> for Polynomial<M>

source§

fn mul_assign(&mut self, other: &'a Polynomial<M>)

Performs the *= operation. Read more
source§

impl<'a, M: NttFriendly> MulAssign<&'a StaticModInt<M>> for Polynomial<M>

source§

fn mul_assign(&mut self, other: &'a StaticModInt<M>)

Performs the *= operation. Read more
source§

impl<M: NttFriendly> MulAssign<Polynomial<M>> for Polynomial<M>

source§

fn mul_assign(&mut self, other: Polynomial<M>)

Performs the *= operation. Read more
source§

impl<M: NttFriendly> MulAssign<StaticModInt<M>> for Polynomial<M>

source§

fn mul_assign(&mut self, other: StaticModInt<M>)

Performs the *= operation. Read more
source§

impl<'a, M: NttFriendly> Neg for &'a Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the - operator.
source§

fn neg(self) -> Polynomial<M>

Performs the unary - operation. Read more
source§

impl<M: NttFriendly> Neg for Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the - operator.
source§

fn neg(self) -> Polynomial<M>

Performs the unary - operation. Read more
source§

impl<M: PartialEq + NttFriendly> PartialEq<Polynomial<M>> for Polynomial<M>

source§

fn eq(&self, other: &Polynomial<M>) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, M: NttFriendly> Rem<&'a Polynomial<M>> for &'a Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the % operator.
source§

fn rem(self, other: &'a Polynomial<M>) -> Polynomial<M>

Performs the % operation. Read more
source§

impl<'a, M: NttFriendly> Rem<&'a Polynomial<M>> for Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the % operator.
source§

fn rem(self, other: &'a Polynomial<M>) -> Polynomial<M>

Performs the % operation. Read more
source§

impl<'a, M: NttFriendly> Rem<&'a StaticModInt<M>> for &'a Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the % operator.
source§

fn rem(self, other: &'a StaticModInt<M>) -> Polynomial<M>

Performs the % operation. Read more
source§

impl<'a, M: NttFriendly> Rem<&'a StaticModInt<M>> for Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the % operator.
source§

fn rem(self, other: &'a StaticModInt<M>) -> Polynomial<M>

Performs the % operation. Read more
source§

impl<'a, M: NttFriendly> Rem<Polynomial<M>> for &'a Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the % operator.
source§

fn rem(self, other: Polynomial<M>) -> Polynomial<M>

Performs the % operation. Read more
source§

impl<M: NttFriendly> Rem<Polynomial<M>> for Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the % operator.
source§

fn rem(self, other: Polynomial<M>) -> Polynomial<M>

Performs the % operation. Read more
source§

impl<'a, M: NttFriendly> Rem<StaticModInt<M>> for &'a Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the % operator.
source§

fn rem(self, other: StaticModInt<M>) -> Polynomial<M>

Performs the % operation. Read more
source§

impl<M: NttFriendly> Rem<StaticModInt<M>> for Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the % operator.
source§

fn rem(self, other: StaticModInt<M>) -> Polynomial<M>

Performs the % operation. Read more
source§

impl<'a, M: NttFriendly> RemAssign<&'a Polynomial<M>> for Polynomial<M>

source§

fn rem_assign(&mut self, other: &'a Polynomial<M>)

Performs the %= operation. Read more
source§

impl<'a, M: NttFriendly> RemAssign<&'a StaticModInt<M>> for Polynomial<M>

source§

fn rem_assign(&mut self, other: &'a StaticModInt<M>)

Performs the %= operation. Read more
source§

impl<M: NttFriendly> RemAssign<Polynomial<M>> for Polynomial<M>

source§

fn rem_assign(&mut self, other: Polynomial<M>)

Performs the %= operation. Read more
source§

impl<M: NttFriendly> RemAssign<StaticModInt<M>> for Polynomial<M>

source§

fn rem_assign(&mut self, other: StaticModInt<M>)

Performs the %= operation. Read more
source§

impl<'a, M: NttFriendly> Shl<usize> for &'a Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the << operator.
source§

fn shl(self, sh: usize) -> Self::Output

Performs the << operation. Read more
source§

impl<M: NttFriendly> Shl<usize> for Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the << operator.
source§

fn shl(self, sh: usize) -> Self::Output

Performs the << operation. Read more
source§

impl<M: NttFriendly> ShlAssign<usize> for Polynomial<M>

source§

fn shl_assign(&mut self, sh: usize)

Performs the <<= operation. Read more
source§

impl<'a, M: NttFriendly> Shr<usize> for &'a Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the >> operator.
source§

fn shr(self, sh: usize) -> Self::Output

Performs the >> operation. Read more
source§

impl<M: NttFriendly> Shr<usize> for Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the >> operator.
source§

fn shr(self, sh: usize) -> Self::Output

Performs the >> operation. Read more
source§

impl<M: NttFriendly> ShrAssign<usize> for Polynomial<M>

source§

fn shr_assign(&mut self, sh: usize)

Performs the >>= operation. Read more
source§

impl<'a, M: NttFriendly> Sub<&'a Polynomial<M>> for &'a Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the - operator.
source§

fn sub(self, other: &'a Polynomial<M>) -> Polynomial<M>

Performs the - operation. Read more
source§

impl<'a, M: NttFriendly> Sub<&'a Polynomial<M>> for Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the - operator.
source§

fn sub(self, other: &'a Polynomial<M>) -> Polynomial<M>

Performs the - operation. Read more
source§

impl<'a, M: NttFriendly> Sub<&'a StaticModInt<M>> for &'a Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the - operator.
source§

fn sub(self, other: &'a StaticModInt<M>) -> Polynomial<M>

Performs the - operation. Read more
source§

impl<'a, M: NttFriendly> Sub<&'a StaticModInt<M>> for Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the - operator.
source§

fn sub(self, other: &'a StaticModInt<M>) -> Polynomial<M>

Performs the - operation. Read more
source§

impl<'a, M: NttFriendly> Sub<Polynomial<M>> for &'a Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the - operator.
source§

fn sub(self, other: Polynomial<M>) -> Polynomial<M>

Performs the - operation. Read more
source§

impl<M: NttFriendly> Sub<Polynomial<M>> for Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the - operator.
source§

fn sub(self, other: Polynomial<M>) -> Polynomial<M>

Performs the - operation. Read more
source§

impl<'a, M: NttFriendly> Sub<StaticModInt<M>> for &'a Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the - operator.
source§

fn sub(self, other: StaticModInt<M>) -> Polynomial<M>

Performs the - operation. Read more
source§

impl<M: NttFriendly> Sub<StaticModInt<M>> for Polynomial<M>

§

type Output = Polynomial<M>

The resulting type after applying the - operator.
source§

fn sub(self, other: StaticModInt<M>) -> Polynomial<M>

Performs the - operation. Read more
source§

impl<'a, M: NttFriendly> SubAssign<&'a Polynomial<M>> for Polynomial<M>

source§

fn sub_assign(&mut self, other: &'a Polynomial<M>)

Performs the -= operation. Read more
source§

impl<'a, M: NttFriendly> SubAssign<&'a StaticModInt<M>> for Polynomial<M>

source§

fn sub_assign(&mut self, other: &'a StaticModInt<M>)

Performs the -= operation. Read more
source§

impl<M: NttFriendly> SubAssign<Polynomial<M>> for Polynomial<M>

source§

fn sub_assign(&mut self, other: Polynomial<M>)

Performs the -= operation. Read more
source§

impl<M: NttFriendly> SubAssign<StaticModInt<M>> for Polynomial<M>

source§

fn sub_assign(&mut self, other: StaticModInt<M>)

Performs the -= operation. Read more
source§

impl<M: Eq + NttFriendly> Eq for Polynomial<M>

source§

impl<M: NttFriendly> StructuralEq for Polynomial<M>

source§

impl<M: NttFriendly> StructuralPartialEq for Polynomial<M>

Auto Trait Implementations§

§

impl<M> RefUnwindSafe for Polynomial<M>

§

impl<M> Send for Polynomial<M>

§

impl<M> Sync for Polynomial<M>

§

impl<M> Unpin for Polynomial<M>

§

impl<M> UnwindSafe for Polynomial<M>

Blanket Implementations§

source§

impl<T> Any for Twhere T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for Twhere T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for Twhere T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for Twhere U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> ToOwned for Twhere T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T> ToString for Twhere T: Display + ?Sized,

source§

default fn to_string(&self) -> String

Converts the given value to a String. Read more
source§

impl<T, U> TryFrom<U> for Twhere U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for Twhere U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<V, T> VZip<V> for Twhere V: MultiLane<T>,

§

fn vzip(self) -> V