:heavy_check_mark: test/yj_queue_operate_all_composite.test.cpp

Back to top page

Depends on

Code

#define PROBLEM "https://judge.yosupo.jp/problem/queue_operate_all_composite"

#include <cstdint>
#include <cstdio>

#include "utility/monoid/composite.cpp"
#include "ModularArithmetic/modint.cpp"
#include "DataStructure/foldable_queue.cpp"

constexpr intmax_t mod = 998244353;
using mi = modint<mod>;

int main() {
  size_t q;
  scanf("%zu", &q);

  foldable_queue<composite_monoid<mi>> fq;
  for (size_t i = 0; i < q; ++i) {
    int t;
    scanf("%d", &t);

    if (t == 0) {
      intmax_t a, b;
      scanf("%jd %jd", &a, &b);
      fq.emplace(a, b);
    } else if (t == 1) {
      fq.pop();
    } else if (t == 2) {
      intmax_t x;
      scanf("%jd", &x);
      printf("%d\n", fq.fold()(x).get());
    }
  }
}

#line 1 "test/yj_queue_operate_all_composite.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/queue_operate_all_composite"

#include <cstdint>
#include <cstdio>

#line 1 "utility/monoid/composite.cpp"
/**
 * @brief 一次関数の合成を得る演算のモノイド
 * @author えびちゃん
 */

#include <algorithm>
#include <utility>

#ifndef H_composite_monoid
#define H_composite_monoid

template <typename Tp>
class composite_monoid {
public:
  using value_type = Tp;

private:
  value_type M_a = 1;
  value_type M_b = 0;

public:
  composite_monoid() = default;  // identity

  composite_monoid(value_type a, value_type b): M_a(a), M_b(b) {};

  composite_monoid& operator +=(composite_monoid that) {
    M_a *= that.M_a;
    M_b *= that.M_a;
    M_b += that.M_b;
    return *this;
  }

  composite_monoid operator +(composite_monoid const& that) const {
    return composite_monoid(*this) += that;
  }
  composite_monoid operator +(composite_monoid&& that) const {
    return composite_monoid(*this) += std::move(that);
  }

  bool operator ==(composite_monoid const& that) const {
    return (M_a == that.M_a && M_b == that.M_b);
  }
  bool operator !=(composite_monoid const& that) const { return !(*this == that); }

  auto get() const { return std::make_pair(M_a, M_b); }
  value_type operator ()(value_type x) const { return M_a * x + M_b; }
};

#endif  /* !defined(H_composite_monoid) */
#line 1 "ModularArithmetic/modint.cpp"



/**
 * @brief 合同算術用クラス
 * @author えびちゃん
 */

#line 10 "ModularArithmetic/modint.cpp"
#include <limits>
#include <type_traits>
#line 13 "ModularArithmetic/modint.cpp"

template <intmax_t Modulo>
class modint {
public:
  using value_type = typename std::conditional<
  (0 < Modulo && Modulo < std::numeric_limits<int>::max() / 2), int, intmax_t
 >::type;

private:
  static constexpr value_type S_cmod = Modulo;  // compile-time
  static value_type S_rmod;  // runtime
  value_type M_value = 0;

  static constexpr value_type S_inv(value_type n, value_type m) {
    value_type x = 0;
    value_type y = 1;
    value_type a = n;
    value_type b = m;
    for (value_type u = y, v = x; a;) {
      value_type q = b / a;
      std::swap(x -= q*u, u);
      std::swap(y -= q*v, v);
      std::swap(b -= q*a, a);
    }
    if ((x %= m) < 0) x += m;
    return x;
  }

  static value_type S_normalize(intmax_t n, value_type m) {
    if (n >= m) {
      n %= m;
    } else if (n < 0) {
      if ((n %= m) < 0) n += m;
    }
    return n;
  }

public:
  modint() = default;
  modint(intmax_t n): M_value(S_normalize(n, get_modulo())) {}

  modint& operator =(intmax_t n) {
    M_value = S_normalize(n, get_modulo());
    return *this;
  }

  modint& operator +=(modint const& that) {
    if ((M_value += that.M_value) >= get_modulo()) M_value -= get_modulo();
    return *this;
  }
  modint& operator -=(modint const& that) {
    if ((M_value -= that.M_value) < 0) M_value += get_modulo();
    return *this;
  }
  modint& operator *=(modint const& that) {
    intmax_t tmp = M_value;
    tmp *= that.M_value;
    M_value = tmp % get_modulo();
    return *this;
  }
  modint& operator /=(modint const& that) {
    intmax_t tmp = M_value;
    tmp *= S_inv(that.M_value, get_modulo());
    M_value = tmp % get_modulo();
    return *this;
  }

  modint& operator ++() {
    if (++M_value == get_modulo()) M_value = 0;
    return *this;
  }
  modint& operator --() {
    if (M_value-- == 0) M_value = get_modulo()-1;
    return *this;
  }

  modint operator ++(int) { modint tmp(*this); ++*this; return tmp; }
  modint operator --(int) { modint tmp(*this); --*this; return tmp; }

  friend modint operator +(modint lhs, modint const& rhs) { return lhs += rhs; }
  friend modint operator -(modint lhs, modint const& rhs) { return lhs -= rhs; }
  friend modint operator *(modint lhs, modint const& rhs) { return lhs *= rhs; }
  friend modint operator /(modint lhs, modint const& rhs) { return lhs /= rhs; }

  modint operator +() const { return *this; }
  modint operator -() const {
    if (M_value == 0) return *this;
    return modint(get_modulo() - M_value);
  }

  friend bool operator ==(modint const& lhs, modint const& rhs) {
    return lhs.M_value == rhs.M_value;
  }
  friend bool operator !=(modint const& lhs, modint const& rhs) {
    return !(lhs == rhs);
  }

  value_type get() const { return M_value; }
  static value_type get_modulo() { return ((S_cmod > 0)? S_cmod: S_rmod); }

  template <int M = Modulo, typename Tp = typename std::enable_if<(M <= 0)>::type>
  static Tp set_modulo(value_type m) { S_rmod = m; }
};

template <intmax_t N>
constexpr typename modint<N>::value_type modint<N>::S_cmod;
template <intmax_t N>
typename modint<N>::value_type modint<N>::S_rmod;


#line 1 "DataStructure/foldable_queue.cpp"



/**
 * @brief fold 可能キュー
 * @author えびちゃん
 */

#include <cstddef>
#include <stack>
#line 12 "DataStructure/foldable_queue.cpp"

template <class Monoid>
class foldable_queue {
public:
  using size_type = size_t;
  using value_type = Monoid;

private:
  std::stack<value_type> M_front, M_back;
  value_type M_back_folded{};

  void M_rotate_to_front() {
    if (!M_back.empty()) {
      M_front.push(std::move(M_back.top()));
      M_back.pop();
    }
    while (!M_back.empty()) {
      M_back.top() += M_front.top();
      M_front.push(std::move(M_back.top()));
      M_back.pop();
    }
    M_back_folded = value_type{};
  }

public:
  size_type size() const { return M_front.size() + M_back.size(); }
  bool empty() const noexcept { return M_front.empty() && M_back.empty(); }

  void push(value_type const& x) {
    M_back.push(x);
    M_back_folded += M_back.top();
  }

  template <typename... Args>
  void emplace(Args&&... args) {
    M_back.emplace(std::forward<Args>(args)...);
    M_back_folded += M_back.top();
  }

  void pop() {
    if (M_front.empty()) M_rotate_to_front();
    M_front.pop();
  }

  value_type fold() const {
    if (M_front.empty()) return M_back_folded;
    return M_front.top() + M_back_folded;
  }
};


#line 9 "test/yj_queue_operate_all_composite.test.cpp"

constexpr intmax_t mod = 998244353;
using mi = modint<mod>;

int main() {
  size_t q;
  scanf("%zu", &q);

  foldable_queue<composite_monoid<mi>> fq;
  for (size_t i = 0; i < q; ++i) {
    int t;
    scanf("%d", &t);

    if (t == 0) {
      intmax_t a, b;
      scanf("%jd %jd", &a, &b);
      fq.emplace(a, b);
    } else if (t == 1) {
      fq.pop();
    } else if (t == 2) {
      intmax_t x;
      scanf("%jd", &x);
      printf("%d\n", fq.fold()(x).get());
    }
  }
}

Back to top page