#line 1 "test/yj_log_of_formal_power_series.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/log_of_formal_power_series"
#include <cstdio>
#include <algorithm>
#line 1 "ModularArithmetic/modint.cpp"
/**
* @brief 合同算術用クラス
* @author えびちゃん
*/
#include <cstdint>
#include <limits>
#include <type_traits>
#include <utility>
template <intmax_t Modulo>
class modint {
public:
using value_type = typename std::conditional<
(0 < Modulo && Modulo < std::numeric_limits<int>::max() / 2), int, intmax_t
>::type;
private:
static constexpr value_type S_cmod = Modulo; // compile-time
static value_type S_rmod; // runtime
value_type M_value = 0;
static constexpr value_type S_inv(value_type n, value_type m) {
value_type x = 0;
value_type y = 1;
value_type a = n;
value_type b = m;
for (value_type u = y, v = x; a;) {
value_type q = b / a;
std::swap(x -= q*u, u);
std::swap(y -= q*v, v);
std::swap(b -= q*a, a);
}
if ((x %= m) < 0) x += m;
return x;
}
static value_type S_normalize(intmax_t n, value_type m) {
if (n >= m) {
n %= m;
} else if (n < 0) {
if ((n %= m) < 0) n += m;
}
return n;
}
public:
modint() = default;
modint(intmax_t n): M_value(S_normalize(n, get_modulo())) {}
modint& operator =(intmax_t n) {
M_value = S_normalize(n, get_modulo());
return *this;
}
modint& operator +=(modint const& that) {
if ((M_value += that.M_value) >= get_modulo()) M_value -= get_modulo();
return *this;
}
modint& operator -=(modint const& that) {
if ((M_value -= that.M_value) < 0) M_value += get_modulo();
return *this;
}
modint& operator *=(modint const& that) {
intmax_t tmp = M_value;
tmp *= that.M_value;
M_value = tmp % get_modulo();
return *this;
}
modint& operator /=(modint const& that) {
intmax_t tmp = M_value;
tmp *= S_inv(that.M_value, get_modulo());
M_value = tmp % get_modulo();
return *this;
}
modint& operator ++() {
if (++M_value == get_modulo()) M_value = 0;
return *this;
}
modint& operator --() {
if (M_value-- == 0) M_value = get_modulo()-1;
return *this;
}
modint operator ++(int) { modint tmp(*this); ++*this; return tmp; }
modint operator --(int) { modint tmp(*this); --*this; return tmp; }
friend modint operator +(modint lhs, modint const& rhs) { return lhs += rhs; }
friend modint operator -(modint lhs, modint const& rhs) { return lhs -= rhs; }
friend modint operator *(modint lhs, modint const& rhs) { return lhs *= rhs; }
friend modint operator /(modint lhs, modint const& rhs) { return lhs /= rhs; }
modint operator +() const { return *this; }
modint operator -() const {
if (M_value == 0) return *this;
return modint(get_modulo() - M_value);
}
friend bool operator ==(modint const& lhs, modint const& rhs) {
return lhs.M_value == rhs.M_value;
}
friend bool operator !=(modint const& lhs, modint const& rhs) {
return !(lhs == rhs);
}
value_type get() const { return M_value; }
static value_type get_modulo() { return ((S_cmod > 0)? S_cmod: S_rmod); }
template <int M = Modulo, typename Tp = typename std::enable_if<(M <= 0)>::type>
static Tp set_modulo(value_type m) { S_rmod = m; }
};
template <intmax_t N>
constexpr typename modint<N>::value_type modint<N>::S_cmod;
template <intmax_t N>
typename modint<N>::value_type modint<N>::S_rmod;
#line 1 "ModularArithmetic/polynomial.cpp"
/**
* @brief 多項式
* @author えびちゃん
*/
#include <cstddef>
#include <climits>
#line 12 "ModularArithmetic/polynomial.cpp"
#include <vector>
#line 1 "integer/bit.cpp"
/**
* @brief ビット演算
* @author えびちゃん
*/
// XXX integral promotion 関連の注意をあまりしていません
#line 12 "integer/bit.cpp"
#include <type_traits>
template <typename Tp>
constexpr auto countl_zero(Tp n)
-> typename std::enable_if<std::is_unsigned<Tp>::value, int>::type
{
using value_type = typename std::make_unsigned<Tp>::type;
int bits = (sizeof(value_type) * CHAR_BIT);
if (n == 0) return bits;
int res = 0;
for (int i = bits / 2; i > 0; i /= 2) {
value_type mask = ((static_cast<value_type>(1) << i) - 1) << i;
if (n & mask) n >>= i;
else res += i;
}
return res;
}
template <typename Tp>
constexpr auto countl_one(Tp n)
-> typename std::enable_if<std::is_unsigned<Tp>::value, int>::type
{
using value_type = typename std::make_unsigned<Tp>::type;
return countl_zero(static_cast<value_type>(~n));
}
template <typename Tp>
constexpr auto countr_zero(Tp n)
-> typename std::enable_if<std::is_unsigned<Tp>::value, int>::type
{
using value_type = typename std::make_unsigned<Tp>::type;
int bits = (sizeof(value_type) * CHAR_BIT);
if (n == 0) return bits;
int res = 0;
for (int i = bits / 2; i > 0; i /= 2) {
value_type mask = ((static_cast<value_type>(1) << i) - 1);
if (!(n & mask)) res += i, n >>= i;
}
return res;
}
template <typename Tp>
constexpr auto countr_one(Tp n)
-> typename std::enable_if<std::is_unsigned<Tp>::value, int>::type
{
using value_type = typename std::make_unsigned<Tp>::type;
return countr_zero(static_cast<value_type>(~n));
}
constexpr unsigned long long half_mask[] = {
0x5555555555555555uLL, 0x3333333333333333uLL, 0x0F0F0F0F0F0F0F0FuLL,
0x00FF00FF00FF00FFuLL, 0x0000FFFF0000FFFFuLL, 0x00000000FFFFFFFFuLL
};
template <typename Tp>
constexpr auto popcount(Tp n)
-> typename std::enable_if<std::is_unsigned<Tp>::value, int>::type
{
int bits = static_cast<int>((sizeof n) * CHAR_BIT);
for (int i = 0, j = 1; j < bits; ++i, j *= 2) {
if (j <= 8) n = (n & half_mask[i]) + ((n >> j) & half_mask[i]);
else n += n >> j;
}
return n & 0xFF;
}
template <typename Tp>
constexpr auto parity(Tp n)
-> typename std::enable_if<std::is_unsigned<Tp>::value, int>::type
{ return popcount(n) & 1; }
template <typename Tp>
int clz(Tp n) { return countl_zero(static_cast<typename std::make_unsigned<Tp>::type>(n)); }
template <typename Tp>
int ctz(Tp n) { return countr_zero(static_cast<typename std::make_unsigned<Tp>::type>(n)); }
template <typename Tp>
int ilog2(Tp n) {
return (CHAR_BIT * sizeof(Tp) - 1) - clz(static_cast<typename std::make_unsigned<Tp>::type>(n));
}
template <typename Tp>
bool is_pow2(Tp n) { return (n > 0) && ((n & (n-1)) == 0); }
template <typename Tp>
Tp floor2(Tp n) { return is_pow2(n)? n: static_cast<Tp>(1) << ilog2(n); }
template <typename Tp>
Tp ceil2(Tp n) { return is_pow2(n)? n: static_cast<Tp>(2) << ilog2(n); }
template <typename Tp>
constexpr auto reverse(Tp n)
-> typename std::enable_if<std::is_unsigned<Tp>::value, Tp>::type
{
int bits = static_cast<int>((sizeof n) * CHAR_BIT);
for (int i = 0, j = 1; j < bits; ++i, j *= 2) {
n = ((n & half_mask[i]) << j) | ((n >> j) & half_mask[i]);
}
return n;
}
#line 1 "ModularArithmetic/garner.cpp"
/**
* @brief Garner's algorithm
* @author えびちゃん
*/
#line 10 "ModularArithmetic/garner.cpp"
#include <tuple>
#line 12 "ModularArithmetic/garner.cpp"
class simultaneous_congruences_garner {
public:
using value_type = intmax_t;
using size_type = size_t;
private:
value_type M_mod = 1;
value_type M_sol = 0;
std::vector<value_type> M_c, M_m;
static auto S_gcd_bezout(value_type a, value_type b) {
value_type x{1}, y{0};
for (value_type u{y}, v{x}; b != 0;) {
value_type q{a/b};
std::swap(x -= q*u, u);
std::swap(y -= q*v, v);
std::swap(a -= q*b, b);
}
return std::make_tuple(a, x, y);
}
public:
simultaneous_congruences_garner() = default;
void push(value_type a, value_type m) {
if (M_c.empty()) {
M_c.push_back(a);
M_m.push_back(m);
return;
}
value_type c = M_c.back();
value_type mi = M_m.back();
for (size_type i = M_c.size()-1; i--;) {
c = (c * M_m[i] + M_c[i]) % m;
(mi *= M_m[i]) %= m;
}
c = (a-c) * std::get<1>(S_gcd_bezout(mi, m)) % m;
if (c < 0) c += m;
M_c.push_back(c);
M_m.push_back(m);
}
auto get(value_type m) const {
value_type x = M_c.back() % m;
for (size_type i = M_c.size()-1; i--;) {
x = (x * M_m[i] + M_c[i]) % m;
}
return x;
}
};
#line 17 "ModularArithmetic/polynomial.cpp"
template <typename ModInt>
class polynomial {
public:
using size_type = size_t;
using value_type = ModInt;
private:
std::vector<value_type> M_f;
void M_normalize() {
while (!M_f.empty() && M_f.back() == 0) M_f.pop_back();
}
static value_type S_omega() {
auto p = value_type{}.get_modulo();
// for p = (u * 2**e + 1) with generator g, returns g ** u mod p
if (p == 998244353 /* (119 << 23 | 1 */) return 15311432; // g = 3
if (p == 163577857 /* (39 << 22 | 1) */) return 121532577; // g = 23
if (p == 167772161 /* (5 << 25 | 1) */) return 243; // g = 3
if (p == 469762049 /* (7 << 26 | 1) */) return 2187; // g = 3
return 0; // XXX
}
void M_fft(bool inverse = false) {
size_type il = ilog2(M_f.size());
for (size_type i = 1; i < M_f.size(); ++i) {
size_type j = reverse(i) >> ((CHAR_BIT * sizeof(size_type)) - il);
if (i < j) std::swap(M_f[i], M_f[j]);
}
size_type zn = ctz(M_f[0].get_modulo()-1);
// pow_omega[i] = omega ^ (2^i)
std::vector<value_type> pow_omega(zn+1, 1);
pow_omega[0] = S_omega();
if (inverse) pow_omega[0] = 1 / pow_omega[0];
for (size_type i = 1; i < pow_omega.size(); ++i)
pow_omega[i] = pow_omega[i-1] * pow_omega[i-1];
for (size_type i = 1, ii = zn-1; i < M_f.size(); i <<= 1, --ii) {
value_type omega(1);
for (size_type jl = 0, jr = i; jr < M_f.size();) {
auto x = M_f[jl];
auto y = M_f[jr] * omega;
M_f[jl] = x + y;
M_f[jr] = x - y;
++jl, ++jr;
if ((jl & i) == i) {
jl += i, jr += i, omega = 1;
} else {
omega *= pow_omega[ii];
}
}
}
if (inverse) {
value_type n1 = value_type(1) / M_f.size();
for (auto& c: M_f) c *= n1;
}
}
void M_ifft() { M_fft(true); }
void M_naive_multiplication(polynomial const& that) {
size_type deg = M_f.size() + that.M_f.size() - 1;
std::vector<value_type> res(deg, 0);
for (size_type i = 0; i < M_f.size(); ++i)
for (size_type j = 0; j < that.M_f.size(); ++j)
res[i+j] += M_f[i] * that.M_f[j];
M_f = std::move(res);
M_normalize();
}
void M_naive_division(polynomial that) {
size_type deg = M_f.size() - that.M_f.size();
std::vector<value_type> res(deg+1);
for (size_type i = deg+1; i--;) {
value_type c = M_f[that.M_f.size()+i-1] / that.M_f.back();
res[i] = c;
for (size_type j = 0; j < that.M_f.size(); ++j)
M_f[that.M_f.size()+i-j-1] -= c * that.M_f[that.M_f.size()-j-1];
}
M_f = std::move(res);
M_normalize();
}
void M_arbitrary_modulo_convolve(polynomial that) {
size_type n = M_f.size() + that.M_f.size() - 1;
std::vector<intmax_t> f(n, 0), g(n, 0);
for (size_type i = 0; i < M_f.size(); ++i) f[i] = M_f[i].get();
for (size_type i = 0; i < that.M_f.size(); ++i) g[i] = that.M_f[i].get();
polynomial<modint<998244353>> f1(f.begin(), f.end()), g1(g.begin(), g.end());
polynomial<modint<163577857>> f2(f.begin(), f.end()), g2(g.begin(), g.end());
polynomial<modint<167772161>> f3(f.begin(), f.end()), g3(g.begin(), g.end());
f1 *= g1;
f2 *= g2;
f3 *= g3;
M_f.resize(n);
for (size_type i = 0; i < n; ++i) {
simultaneous_congruences_garner scg;
scg.push(f1[i].get(), 998244353);
scg.push(f2[i].get(), 163577857);
scg.push(f3[i].get(), 167772161);
M_f[i] = scg.get(value_type::get_modulo());
}
M_normalize();
}
polynomial(size_type n, value_type x): M_f(n, x) {} // not normalized
public:
polynomial() = default;
template <typename InputIt>
polynomial(InputIt first, InputIt last): M_f(first, last) { M_normalize(); }
polynomial(std::initializer_list<value_type> il): polynomial(il.begin(), il.end()) {}
polynomial inverse(size_type m) const {
// XXX only for friendly moduli
polynomial res{1 / M_f[0]};
for (size_type d = 1; d < m; d *= 2) {
polynomial f(d+d, 0), g(d+d, 0);
for (size_type j = 0; j < d+d; ++j) f.M_f[j] = (*this)[j];
for (size_type j = 0; j < d; ++j) g.M_f[j] = res.M_f[j];
f.M_fft();
g.M_fft();
for (size_type j = 0; j < d+d; ++j) f.M_f[j] *= g.M_f[j];
f.M_ifft();
for (size_type j = 0; j < d; ++j) {
f.M_f[j] = 0;
f.M_f[j+d] = -f.M_f[j+d];
}
f.M_fft();
for (size_type j = 0; j < d+d; ++j) f.M_f[j] *= g.M_f[j];
f.M_ifft();
for (size_type j = 0; j < d; ++j) f.M_f[j] = res.M_f[j];
res = std::move(f);
}
res.M_f.erase(res.M_f.begin()+m, res.M_f.end());
return res;
}
std::vector<value_type> multipoint_evaluate(std::vector<value_type> const& xs) const {
size_type m = xs.size();
size_type m2 = ceil2(m);
std::vector<polynomial> g(m2+m2, {1});
for (size_type i = 0; i < m; ++i) g[m2+i] = {-xs[i], 1};
for (size_type i = m2; i-- > 1;) g[i] = g[i<<1|0] * g[i<<1|1];
g[1] = (*this) % g[1];
for (size_type i = 2; i < m2+m; ++i) g[i] = g[i>>1] % g[i];
std::vector<value_type> ys(m);
for (size_type i = 0; i < m; ++i) ys[i] = g[m2+i][0];
return ys;
}
void differentiate() {
for (size_type i = 0; i+1 < M_f.size(); ++i) M_f[i] = (i+1) * M_f[i+1];
if (!M_f.empty()) M_f.pop_back();
}
void integrate(value_type c = 0) {
// for (size_type i = 0; i < M_f.size(); ++i) M_f[i] /= i+1;
size_type n = M_f.size();
std::vector<value_type> inv(n+1, 1);
auto mod = value_type::get_modulo();
for (size_type i = 2; i <= n; ++i)
inv[i] = -value_type(mod / i).get() * inv[mod % i];
for (size_type i = 0; i < n; ++i) M_f[i] *= inv[i+1];
if (!(c == 0 && M_f.empty())) M_f.insert(M_f.begin(), c);
}
polynomial& operator +=(polynomial const& that) {
if (M_f.size() < that.M_f.size())
M_f.resize(that.M_f.size(), 0);
for (size_type i = 0; i < that.M_f.size(); ++i)
M_f[i] += that.M_f[i];
M_normalize();
return *this;
}
polynomial& operator -=(polynomial const& that) {
if (M_f.size() < that.M_f.size())
M_f.resize(that.M_f.size(), 0);
for (size_type i = 0; i < that.M_f.size(); ++i)
M_f[i] -= that.M_f[i];
M_normalize();
return *this;
}
polynomial& operator *=(polynomial that) {
if (zero() || that.zero()) {
M_f.clear();
return *this;
}
if (that.M_f.size() == 1) {
// scalar multiplication
auto m = that.M_f[0];
for (auto& c: M_f) c *= m;
return *this;
}
if (M_f.size() + that.M_f.size() <= 64) {
M_naive_multiplication(that);
return *this;
}
size_type n = ceil2(M_f.size() + that.M_f.size() - 1);
if (ctz(n) > ctz(value_type::get_modulo()-1)) {
M_arbitrary_modulo_convolve(std::move(that));
return *this;
}
M_f.resize(n, 0);
that.M_f.resize(n, 0);
M_fft();
that.M_fft();
for (size_type i = 0; i < n; ++i)
M_f[i] *= that.M_f[i];
M_ifft();
M_normalize();
return *this;
}
polynomial& operator /=(polynomial that) {
if (M_f.size() < that.M_f.size()) {
M_f[0] = 0;
M_f.erase(M_f.begin()+1, M_f.end());
return *this;
}
if (that.M_f.size() == 1) {
// scalar division
value_type d = 1 / that.M_f[0];
for (auto& c: M_f) c *= d;
return *this;
}
if (that.M_f.size() <= 256) {
M_naive_division(that);
return *this;
}
size_type deg = M_f.size() - that.M_f.size() + 1;
std::reverse(M_f.begin(), M_f.end());
std::reverse(that.M_f.begin(), that.M_f.end());
*this *= that.inverse(deg);
M_f.resize(deg);
std::reverse(M_f.begin(), M_f.end());
M_normalize();
return *this;
}
polynomial& operator %=(polynomial that) {
if (M_f.size() < that.M_f.size()) return *this;
*this -= *this / that * that;
return *this;
}
polynomial operator +(polynomial const& that) const {
return polynomial(*this) += that;
}
polynomial operator -(polynomial const& that) const {
return polynomial(*this) -= that;
}
polynomial operator *(polynomial const& that) const {
return polynomial(*this) *= that;
}
polynomial operator /(polynomial const& that) const {
return polynomial(*this) /= that;
}
polynomial operator %(polynomial const& that) const {
return polynomial(*this) %= that;
}
value_type const operator [](size_type i) const {
return ((i < M_f.size())? M_f[i]: 0);
}
value_type operator ()(value_type x) const {
value_type y = 0;
for (size_type i = M_f.size(); i--;) y = y * x + M_f[i];
return y;
}
bool zero() const noexcept { return M_f.empty(); }
size_type degree() const { return M_f.size()-1; } // XXX deg(0)
void fft(size_type n = 0) { if (n) M_f.resize(n, value_type{0}); M_fft(); }
void ifft(size_type n = 0) { if (n) M_f.resize(n, value_type{0}); M_ifft(); }
};
#line 1 "ModularArithmetic/operations.cpp"
/**
* @brief 合同算術の基本演算
* @author えびちゃん
*/
#include <stdexcept>
#line 11 "ModularArithmetic/operations.cpp"
#line 13 "ModularArithmetic/operations.cpp"
template <typename ModInt>
ModInt pow(ModInt const& n, intmax_t iexp) {
ModInt res(1);
for (ModInt dbl = n; iexp; iexp >>= 1) {
if (iexp & 1) res *= dbl;
dbl *= dbl;
}
return res;
}
template <typename ModInt>
ModInt sqrt(ModInt const& n) {
if (n == 0) return n;
using value_type = typename ModInt::value_type;
intmax_t const p = n.get_modulo();
if (p % 4 == 3) {
ModInt r = pow(n, (p+1) / 4);
if (r * r == n) return r;
throw std::logic_error("quadratic nonresidue");
}
value_type s = ctz(p-1);
value_type q = (p-1) >> s;
ModInt z;
for (value_type z0 = 2; z0 < p; ++z0) {
z = ModInt(z0);
if (pow(z, (p-1) / 2) == -1) break;
}
value_type m = s;
ModInt c = pow(z, q);
ModInt t = pow(n, q);
ModInt r = pow(n, (q+1) / 2);
while (true) {
if (t == 0) return 0;
if (t == 1) return r;
value_type i = 0;
for (auto tt = t; tt != 1; ++i) tt *= tt;
if (i == m) throw std::logic_error("quadratic nonresidue");
auto b = c;
for (value_type j = 0; j < m-i-1; ++j) b *= b;
m = i;
c = b * b;
t *= c;
r *= b;
}
}
template <typename ModInt>
std::vector<ModInt> sqrt_all(ModInt const& n) {
try {
auto r = sqrt(n);
if (r == -r) return {r};
return {r, -r};
} catch (std::logic_error const&) {
return {};
}
}
template <typename ModPolynomial>
ModPolynomial log(ModPolynomial const& f) {
auto g = f;
g.differentiate();
g *= f.inverse(f.degree()+1);
g.integrate();
return g;
}
#line 9 "test/yj_log_of_formal_power_series.test.cpp"
using mi = modint<998244353>;
int main() {
size_t n;
scanf("%zu", &n);
std::vector<int> a(n);
for (auto& ai: a) scanf("%d", &ai);
polynomial<mi> f(a.begin(), a.end());
polynomial<mi> g = log(f);
for (size_t i = 0; i < n; ++i)
printf("%d%c", g[i].get(), i+1<n? ' ': '\n');
}