#line 1 "test/aoj_GRL_5_E.test.cpp"
#define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_5_E"
#include <cstdint>
#include <cstdio>
#include <cassert>
#include <tuple>
#include <vector>
#line 1 "utility/action/add_sum.cpp"
/**
* @brief 区間和・区間加算用のヘルパークラス
* @author えびちゃん
*/
#line 1 "utility/monoid/length.cpp"
/**
* @brief 和と長さを得る演算のモノイド
* @author えびちゃん
*/
#include <cstddef>
#include <utility>
#ifndef H_length_monoid
#define H_length_monoid
template <typename Tp>
class length_monoid {
public:
using value_type = Tp;
using size_type = size_t;
private:
value_type M_x{};
size_type M_l = 1;
public:
length_monoid() = default; // identity
length_monoid(value_type const& x, size_type l = 1): M_x(x), M_l(l) {};
length_monoid(value_type&& x, size_type l = 1): M_x(std::move(x)), M_l(l) {};
length_monoid& operator +=(length_monoid const& that) {
M_x += that.M_x;
M_l += that.M_l;
return *this;
}
length_monoid& operator +=(length_monoid&& that) {
M_x += std::move(that.M_x);
M_l += that.M_l;
return *this;
}
length_monoid operator +(length_monoid const& that) const {
return length_monoid(*this) += that;
}
length_monoid operator +(length_monoid&& that) const {
return length_monoid(*this) += std::move(that);
}
value_type const& get() const { return M_x; }
size_type length() const { return M_l; }
};
#endif /* !defined(H_length_monoid) */
#line 10 "utility/action/add_sum.cpp"
template <typename Tp>
struct action_add_to_sum {
using operand_type = length_monoid<Tp>;
using action_type = Tp;
static void act(operand_type& op, action_type const& a) {
op += operand_type(a * op.length(), 0);
}
};
#line 1 "DataStructure/segment_tree.cpp"
/**
* @brief 区間作用・区間和セグメント木
* @author えびちゃん
*/
#line 11 "DataStructure/segment_tree.cpp"
#line 1 "integer/bit.cpp"
/**
* @brief ビット演算
* @author えびちゃん
*/
// XXX integral promotion 関連の注意をあまりしていません
#include <climits>
#include <type_traits>
template <typename Tp>
constexpr auto countl_zero(Tp n)
-> typename std::enable_if<std::is_unsigned<Tp>::value, int>::type
{
using value_type = typename std::make_unsigned<Tp>::type;
int bits = (sizeof(value_type) * CHAR_BIT);
if (n == 0) return bits;
int res = 0;
for (int i = bits / 2; i > 0; i /= 2) {
value_type mask = ((static_cast<value_type>(1) << i) - 1) << i;
if (n & mask) n >>= i;
else res += i;
}
return res;
}
template <typename Tp>
constexpr auto countl_one(Tp n)
-> typename std::enable_if<std::is_unsigned<Tp>::value, int>::type
{
using value_type = typename std::make_unsigned<Tp>::type;
return countl_zero(static_cast<value_type>(~n));
}
template <typename Tp>
constexpr auto countr_zero(Tp n)
-> typename std::enable_if<std::is_unsigned<Tp>::value, int>::type
{
using value_type = typename std::make_unsigned<Tp>::type;
int bits = (sizeof(value_type) * CHAR_BIT);
if (n == 0) return bits;
int res = 0;
for (int i = bits / 2; i > 0; i /= 2) {
value_type mask = ((static_cast<value_type>(1) << i) - 1);
if (!(n & mask)) res += i, n >>= i;
}
return res;
}
template <typename Tp>
constexpr auto countr_one(Tp n)
-> typename std::enable_if<std::is_unsigned<Tp>::value, int>::type
{
using value_type = typename std::make_unsigned<Tp>::type;
return countr_zero(static_cast<value_type>(~n));
}
constexpr unsigned long long half_mask[] = {
0x5555555555555555uLL, 0x3333333333333333uLL, 0x0F0F0F0F0F0F0F0FuLL,
0x00FF00FF00FF00FFuLL, 0x0000FFFF0000FFFFuLL, 0x00000000FFFFFFFFuLL
};
template <typename Tp>
constexpr auto popcount(Tp n)
-> typename std::enable_if<std::is_unsigned<Tp>::value, int>::type
{
int bits = static_cast<int>((sizeof n) * CHAR_BIT);
for (int i = 0, j = 1; j < bits; ++i, j *= 2) {
if (j <= 8) n = (n & half_mask[i]) + ((n >> j) & half_mask[i]);
else n += n >> j;
}
return n & 0xFF;
}
template <typename Tp>
constexpr auto parity(Tp n)
-> typename std::enable_if<std::is_unsigned<Tp>::value, int>::type
{ return popcount(n) & 1; }
template <typename Tp>
int clz(Tp n) { return countl_zero(static_cast<typename std::make_unsigned<Tp>::type>(n)); }
template <typename Tp>
int ctz(Tp n) { return countr_zero(static_cast<typename std::make_unsigned<Tp>::type>(n)); }
template <typename Tp>
int ilog2(Tp n) {
return (CHAR_BIT * sizeof(Tp) - 1) - clz(static_cast<typename std::make_unsigned<Tp>::type>(n));
}
template <typename Tp>
bool is_pow2(Tp n) { return (n > 0) && ((n & (n-1)) == 0); }
template <typename Tp>
Tp floor2(Tp n) { return is_pow2(n)? n: static_cast<Tp>(1) << ilog2(n); }
template <typename Tp>
Tp ceil2(Tp n) { return is_pow2(n)? n: static_cast<Tp>(2) << ilog2(n); }
template <typename Tp>
constexpr auto reverse(Tp n)
-> typename std::enable_if<std::is_unsigned<Tp>::value, Tp>::type
{
int bits = static_cast<int>((sizeof n) * CHAR_BIT);
for (int i = 0, j = 1; j < bits; ++i, j *= 2) {
n = ((n & half_mask[i]) << j) | ((n >> j) & half_mask[i]);
}
return n;
}
#line 13 "DataStructure/segment_tree.cpp"
template <typename Operation>
class segment_tree {
public:
using size_type = size_t;
using operation = Operation;
using operand_type = typename operation::operand_type;
using action_type = typename operation::action_type;
using value_type = operand_type;
private:
size_type M_n;
std::vector<operand_type> M_c;
std::vector<action_type> M_d; // deferred
void M_build(size_type i) {
while (i > 1) {
i >>= 1;
M_c[i] = (M_c[i<<1|0] + M_c[i<<1|1]);
operation::act(M_c[i], M_d[i]);
}
}
void M_resolve(size_type i) {
size_type h = ilog2(M_n) + 2; // ilog2p1(M_n*2)
for (size_type s = h; s > 0; --s) {
size_type p = i >> s;
action_type id{};
if (M_d[p] != id) {
M_apply(p<<1|0, M_d[p]);
M_apply(p<<1|1, M_d[p]);
M_d[p] = id;
}
}
}
void M_apply(size_type i, action_type const& x) {
operation::act(M_c[i], x);
if (i < M_n) M_d[i] += x;
}
public:
segment_tree() = default;
explicit segment_tree(size_type n):
M_n(n), M_c(n+n, operand_type{}), M_d(n, action_type{}) {}
segment_tree(size_type n, operand_type const& x):
M_n(n), M_c(n+n, x), M_d(n, action_type{})
{
for (size_type i = n; i--;) M_c[i] = M_c[i<<1|0] + M_c[i<<1|1];
}
template <typename InputIt>
segment_tree(InputIt first, InputIt last): M_c(first, last) {
M_n = M_c.size();
M_d.assign(M_n, action_type{});
M_c.insert(M_c.begin(), M_n, operand_type{});
for (size_type i = M_n; i--;) M_c[i] = M_c[i<<1|0] + M_c[i<<1|1];
}
void assign(size_type n) {
M_n = n;
M_c(n+n, operand_type{});
M_d(n, action_type{});
}
void assign(size_type n, operand_type const& x) {
M_n = n;
M_c(n+n, x);
M_d(n, action_type{});
for (size_type i = n; i--;) M_c[i] = M_c[i<<1|0] + M_c[i<<1|1];
}
template <typename InputIt>
void assign(InputIt first, InputIt last) {
M_c.assign(first, last);
M_n = M_c.size();
M_d.assign(M_n, action_type{});
M_c.insert(M_c.begin(), M_n, operand_type{});
for (size_type i = M_n; i--;) M_c[i] = M_c[i<<1|0] + M_c[i<<1|1];
}
void act(size_type l, size_type r, action_type const& x) {
if (l == r) return;
l += M_n;
r += M_n;
size_type l0 = l;
size_type r0 = r;
M_resolve(l0);
M_resolve(r0-1);
while (l < r) {
if (l & 1) M_apply(l++, x);
if (r & 1) M_apply(--r, x);
l >>= 1;
r >>= 1;
}
M_build(l0);
M_build(r0-1);
}
operand_type fold(size_type l, size_type r) {
operand_type resl{}, resr{};
if (l == r) return resl;
l += M_n;
r += M_n;
M_resolve(l);
M_resolve(r-1);
while (l < r) {
if (l & 1) resl += M_c[l++];
if (r & 1) resr = M_c[--r] + std::move(resr);
l >>= 1;
r >>= 1;
}
return resl += resr;
}
operand_type operator [](size_type i) {
i += M_n;
M_resolve(i);
return M_c[i];
}
};
#line 1 "Graph/hl_decomposition.cpp"
/**
* @brief HL 分解
* @author えびちゃん
* @see https://codeforces.com/blog/entry/53170
*/
#line 12 "Graph/hl_decomposition.cpp"
#include <type_traits>
#line 15 "Graph/hl_decomposition.cpp"
struct value_on_directed_edge_tag {};
struct value_on_undirected_edge_tag {};
struct value_on_vertex_tag {};
template <typename RangeQuery, typename ValueAttribute>
class hl_decomposed_tree {
public:
using size_type = size_t;
using range_query_type = RangeQuery;
using value_type = typename range_query_type::value_type;
using attribute = ValueAttribute;
private:
size_type M_n = 0;
std::vector<size_type> M_p, M_hp; // parent, heavy path root
std::vector<size_type> M_in;
range_query_type M_fa, M_fd;
void M_dfs_size(
std::vector<std::vector<size_type>>& al, std::vector<size_type>& ss,
size_type v, size_type p
) {
ss[v] = 1;
M_p[v] = p;
if (al[v][0] == p) std::swap(al[v][0], al[v].back());
for (auto& u: al[v]) {
if (u == p) continue;
M_dfs_size(al, ss, u, v);
ss[v] += ss[u];
if (ss[u] > ss[al[v][0]]) std::swap(u, al[v][0]);
}
}
void M_dfs_heavy_path(
std::vector<std::vector<size_type>> const& al, std::vector<size_type> const& ss,
size_type v, size_type& t
) {
M_in[v] = t++;
for (auto u: al[v]) {
if (u == M_p[v]) continue;
M_hp[u] = ((u == al[v][0])? M_hp[v]: u);
M_dfs_heavy_path(al, ss, u, t);
}
}
void M_decompose(std::vector<std::vector<size_type>>& al, size_type r = 0) {
std::vector<size_type> ss(M_n, 0);
M_dfs_size(al, ss, r, M_n);
size_type in = 0;
M_dfs_heavy_path(al, ss, r, in);
}
size_type M_lca(size_type u, size_type v) const {
if (M_in[u] > M_in[v]) std::swap(u, v);
if (M_hp[u] == M_hp[v]) return u;
return M_lca(u, M_p[M_hp[v]]);
}
static void S_fold(value_type& this_, value_type that, bool foldl) {
if (foldl) {
this_ += that;
} else {
this_ = that + std::move(this_);
}
}
value_type M_fold_one_way(size_type u, size_type v, bool asc) {
value_type res{};
if (asc) {
while (M_hp[u] != M_hp[v]) {
size_type l = M_n-1 - M_in[u];
size_type r = M_n-1 - M_in[M_hp[u]];
S_fold(res, M_fa.fold(l, r+1), true);
u = M_p[M_hp[u]];
}
size_type l = M_n-1 - M_in[u];
size_type r = M_n-1 - M_in[v];
S_fold(res, M_fa.fold(l, r), true);
} else {
while (M_hp[u] != M_hp[v]) {
size_type l = M_in[M_hp[u]];
size_type r = M_in[u];
S_fold(res, M_fd.fold(l, r+1), false);
u = M_p[M_hp[u]];
}
size_type l = M_in[v]+1;
size_type r = M_in[u]+1;
S_fold(res, M_fd.fold(l, r), false);
}
return res;
}
template <typename Tp>
void M_act_one_way(size_type u, size_type v, Tp x, bool asc) {
if (asc) {
while (M_hp[u] != M_hp[v]) {
size_type l = M_n-1 - M_in[u];
size_type r = M_n-1 - M_in[M_hp[u]];
M_fa.act(l, r+1, x);
u = M_p[M_hp[u]];
}
size_type l = M_n-1 - M_in[u];
size_type r = M_n-1 - M_in[v];
M_fa.act(l, r, x);
} else {
while (M_hp[u] != M_hp[v]) {
size_type l = M_in[M_hp[u]];
size_type r = M_in[u];
M_fd.act(l, r+1, x);
u = M_p[M_hp[u]];
}
size_type l = M_in[v]+1;
size_type r = M_in[u]+1;
M_fd.act(l, r, x);
}
}
value_type M_fold(size_type u, size_type v) {
size_type w = M_lca(u, v);
value_type resl = M_fold_one_way(u, w, true);
value_type resr = M_fold_one_way(v, w, false);
if (std::is_same<attribute, value_on_vertex_tag>::value) {
resl += M_fd.fold(M_in[w], M_in[w]+1);
}
return resl += resr;
}
void M_set(size_type v, value_type x, bool asc) {
// on directed edges or on vertices
bool dir = std::is_same<ValueAttribute, value_on_directed_edge_tag>::value;
if (asc || !dir) M_fa.set(M_n-1 - M_in[v], x);
if (!asc || !dir) M_fd.set(M_in[v], x);
}
template <typename Tp>
void M_act(size_type u, size_type v, Tp x) {
size_type w = M_lca(u, v);
M_act_one_way(u, w, x, true);
M_act_one_way(v, w, x, false);
if (!std::is_same<attribute, value_on_directed_edge_tag>::value) {
M_act_one_way(v, w, x, true);
M_act_one_way(u, w, x, false);
if (std::is_same<attribute, value_on_vertex_tag>::value) {
M_act_one_way(w, M_p[w], x, true);
M_act_one_way(w, M_p[w], x, false);
}
}
}
public:
hl_decomposed_tree() = default;
template <
typename Va = ValueAttribute,
typename Tp = typename std::enable_if<std::is_same<Va, value_on_vertex_tag>::value, value_type>::type
>
hl_decomposed_tree(
std::vector<Tp> const& vs,
std::vector<std::pair<size_type, size_type>> const& es, size_type r = 0
): M_n(vs.size()+1), M_p(M_n, M_n), M_hp(M_n, r), M_in(M_n) {
size_type n = M_n-1;
std::vector<std::vector<size_type>> al(M_n);
for (auto const& [u, v]: es) {
al[u].push_back(v);
al[v].push_back(u);
}
al[r].push_back(n);
al[n].push_back(r);
M_decompose(al, n);
std::vector<value_type> a(M_n), d(M_n);
for (size_type i = 0; i < n; ++i) a[M_in[i]] = d[M_in[i]] = vs[i];
M_fa.assign(a.rbegin(), a.rend());
M_fd.assign(d.begin(), d.end());
}
template <
typename Va = ValueAttribute,
typename Sz = typename std::enable_if<!std::is_same<Va, value_on_vertex_tag>::value, size_type>::type
>
hl_decomposed_tree(
Sz n, std::vector<std::tuple<size_type, size_type, value_type>> const& es,
size_type r = 0
): M_n(n), M_p(n, n), M_hp(n, r), M_in(n) {
std::vector<std::vector<size_type>> al(n);
bool undir = std::is_same<Va, value_on_undirected_edge_tag>::value;
for (auto const& e: es) {
size_type u, v;
std::tie(u, v, std::ignore) = e;
al[u].push_back(v);
if (undir) al[v].push_back(u);
}
M_decompose(al);
std::vector<value_type> a(n), d(n);
for (auto const& [u, v, w]: es) {
if (u == M_p[v]) {
d[M_in[v]] = w;
if (undir) a[M_in[v]] = w;
} else {
a[M_in[u]] = w;
if (undir) d[M_in[u]] = w;
}
}
M_fa.assign(a.rbegin(), a.rend());
M_fd.assign(d.begin(), d.end());
}
value_type fold(size_type u, size_type v) { return M_fold(u, v); }
void set(size_type v, value_type x, bool asc = true) { M_set(v, x, asc); }
template <typename Rq = RangeQuery, typename Ta = typename Rq::action_type>
void act(size_type u, size_type v, Ta x) { M_act(u, v, x); }
};
#line 12 "test/aoj_GRL_5_E.test.cpp"
int main() {
size_t n;
scanf("%zu", &n);
std::vector<size_t> par(n, n);
std::vector<std::tuple<size_t, size_t, length_monoid<intmax_t>>> es;
for (size_t i = 0; i < n; ++i) {
size_t k;
scanf("%zu", &k);
for (size_t j = 0; j < k; ++j) {
size_t c;
scanf("%zu", &c);
par[c] = i;
es.emplace_back(i, c, 0);
}
}
hl_decomposed_tree<segment_tree<action_add_to_sum<intmax_t>>, value_on_undirected_edge_tag> g(n, es);
size_t q;
scanf("%zu", &q);
for (size_t i = 0; i < q; ++i) {
int t;
scanf("%d", &t);
if (t == 0) {
size_t v;
intmax_t w;
scanf("%zu %jd", &v, &w);
g.act(v, 0, w);
} else if (t == 1) {
size_t u;
scanf("%zu", &u);
intmax_t res = g.fold(u, 0).get();
assert(res == g.fold(0, u).get());
printf("%jd\n", res);
}
}
}