#line 1 "test/aoj_2970.test.cpp"
#define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2970"
#include <cstdint>
#include <cstdio>
#include <vector>
#line 1 "ModularArithmetic/chinese_remaindering.cpp"
/**
* @brief 連立合同式の解の構成
* @author えびちゃん
*/
#include <tuple>
#include <utility>
#line 1 "integer/fused_operations.cpp"
/**
* @brief 乗算との複合演算
* @author えびちゃん
*/
#include <climits>
#include <algorithm>
#include <type_traits>
#line 1 "integer/overflow.cpp"
/**
* @brief オーバーフロー判定つき演算
* @author えびちゃん
*/
#line 10 "integer/overflow.cpp"
#include <type_traits>
#line 1 "integer/mul_upper.cpp"
/**
* @brief 整数の乗算の上位ワード
* @author えびちゃん
*/
#line 11 "integer/mul_upper.cpp"
#include <type_traits>
#line 13 "integer/mul_upper.cpp"
#line 1 "utility/literals.cpp"
/**
* @brief ユーザ定義リテラル
* @author えびちゃん
*/
#include <cstddef>
#line 11 "utility/literals.cpp"
constexpr intmax_t operator ""_jd(unsigned long long n) { return n; }
constexpr uintmax_t operator ""_ju(unsigned long long n) { return n; }
constexpr size_t operator ""_zu(unsigned long long n) { return n; }
constexpr ptrdiff_t operator ""_td(unsigned long long n) { return n; }
constexpr int8_t operator ""_i8(unsigned long long n) { return n; }
constexpr int16_t operator ""_i16(unsigned long long n) { return n; }
constexpr int32_t operator ""_i32(unsigned long long n) { return n; }
constexpr int64_t operator ""_i64(unsigned long long n) { return n; }
constexpr uint8_t operator ""_u8(unsigned long long n) { return n; }
constexpr uint16_t operator ""_u16(unsigned long long n) { return n; }
constexpr uint32_t operator ""_u32(unsigned long long n) { return n; }
constexpr uint64_t operator ""_u64(unsigned long long n) { return n; }
#line 15 "integer/mul_upper.cpp"
template <typename Tp>
auto mul_upper(Tp u, Tp v)
-> typename std::enable_if<std::is_integral_v<Tp>, Tp>::type
{
using value_type = Tp;
using unsigned_type = typename std::make_unsigned<Tp>::type;
unsigned_type hi;
int const bits = CHAR_BIT * sizeof(value_type);
if (false && (sizeof u) < sizeof(uintmax_t)) {
uintmax_t mul = uintmax_t(u) * v;
hi = mul >> bits;
// XXX unsigned only
} else {
int const half_bits = bits / 2;
unsigned_type const half_mask = (unsigned_type(1) << half_bits) - 1;
unsigned_type u0 = u & half_mask, v0 = v & half_mask;
unsigned_type u1 = unsigned_type(u) >> half_bits, v1 = unsigned_type(v) >> half_bits;
unsigned_type w0 = u0 * v0;
unsigned_type t = u1 * v0 + (w0 >> half_bits);
unsigned_type w1 = t & half_mask;
unsigned_type w2 = t >> half_bits;
w1 += u0 * v1;
hi = u1 * v1 + w2 + (w1 >> half_bits);
if (u < 0) hi -= v;
if (v < 0) hi -= u;
}
return hi;
}
#line 13 "integer/overflow.cpp"
template <typename Tp>
auto add_overflow(Tp x, Tp y, Tp& z)
-> typename std::enable_if<std::is_integral_v<Tp>, bool>::type
{
using unsigned_type = typename std::make_unsigned<Tp>::type;
unsigned_type ux = x, uy = y;
unsigned_type sign_bit = unsigned_type{1} << ((CHAR_BIT * sizeof(Tp)) - 1);
if ((ux & sign_bit) ^ (uy & sign_bit)) return (z = x + y), false;
if (((ux + uy) & sign_bit) != (ux & sign_bit)) return true;
z = x + y;
return false;
}
template <typename Tp>
auto sub_overflow(Tp x, Tp y, Tp& z)
-> typename std::enable_if<std::is_integral_v<Tp>, bool>::type
{
using unsigned_type = typename std::make_unsigned<Tp>::type;
if (y == 0) return (z = x), false;
unsigned_type uy = y;
if (~(uy | (uy-1)) == 0 && y < 0) return true;
return add_overflow(x, -y, z);
}
template <typename Tp>
auto mul_overflow(Tp x, Tp y, Tp& z)
-> typename std::enable_if<std::is_integral_v<Tp>, bool>::type
{
using unsigned_type = typename std::make_unsigned<Tp>::type;
unsigned_type ux = x, uy = y;
unsigned_type sign_bit = ~(~unsigned_type(0) >> 1);
if (((ux * uy) & sign_bit) != ((ux & sign_bit) ^ (uy & sign_bit))) return true;
z = x * y;
return false;
}
#line 15 "integer/fused_operations.cpp"
template <typename Tp>
Tp fused_mul_add(Tp x, Tp y, Tp z) {
// Return x * y + z without overflow
using unsigned_type = typename std::make_unsigned<Tp>::type;
unsigned_type ux = x, uy = y;
unsigned_type lo = ux * uy;
return lo + z;
}
template <typename Tp>
Tp fused_mul_min(Tp x, Tp y, Tp z) {
// min(x * y, z) without overflow
Tp w;
if (mul_overflow(x, y, w)) return z; // undefined if x*y < minimum
return std::min(w, z);
}
template <typename Tp>
Tp fused_add_mod(Tp x, Tp y, Tp z) {
// (x + y) % z, same sign as z, without overflow
if (std::is_signed_v<Tp>) {
if ((x %= z) != 0 && ((x < 0) != (z < 0))) x += z;
if ((y %= z) != 0 && ((y < 0) != (z < 0))) y += z;
x -= z - y;
if ((x %= z) != 0 && ((x < 0) != (z < 0))) x += z;
} else {
x %= z;
y %= z;
x += ((x < z-y)? y: y-z);
}
return x;
}
template <typename Tp>
Tp fused_mul_mod(Tp x, Tp y, Tp z) {
// (x * y) % z, same sign as z, without overflow
using value_type = Tp;
using unsigned_type = typename std::make_unsigned<Tp>::type;
unsigned_type ux = x, uy = y;
value_type hi = mul_upper(x, y) % z;
int const bits = CHAR_BIT * sizeof(Tp);
for (int i = 0; i < bits; ++i) {
hi = fused_add_mod(hi, hi, z);
}
unsigned_type uxy = ux * uy;
value_type loh = uxy >> (bits/2);
value_type lol = uxy & (~unsigned_type(0) >> (bits/2));
for (int i = 0; i < bits/2; ++i) {
loh = fused_add_mod(loh, loh, z);
}
lol = fused_add_mod(loh, lol, z);
return fused_add_mod(hi, lol, z);
}
#line 13 "ModularArithmetic/chinese_remaindering.cpp"
class simultaneous_congruences {
public:
using value_type = intmax_t;
private:
value_type M_mod = 1;
value_type M_sol = 0;
static auto S_gcd_bezout(value_type a, value_type b) {
value_type x{1}, y{0};
for (value_type u{y}, v{x}; b != 0;) {
value_type q{a/b};
std::swap(x -= q*u, u);
std::swap(y -= q*v, v);
std::swap(a -= q*b, b);
}
return std::make_tuple(a, x, y);
}
public:
simultaneous_congruences() = default;
bool push(value_type a, value_type m) {
if (M_mod == 0) return false;
if ((a %= m) < 0) a += m;
auto [g, x, y] = S_gcd_bezout(M_mod, m);
value_type mod = M_mod / g * m;
value_type sol0 = fused_mul_mod(fused_mul_mod(M_mod / g, a, mod), x, mod);
value_type sol1 = fused_mul_mod(fused_mul_mod(m / g, M_sol, mod), y, mod);
value_type sol = fused_add_mod(sol0, sol1, mod);
if (g > 1 && (sol % M_mod != M_sol || sol % m != a)) {
M_mod = M_sol = 0;
return false;
}
M_sol = sol;
M_mod = mod;
return true;
}
auto get() const { return std::make_pair(M_sol, M_mod); }
};
#line 8 "test/aoj_2970.test.cpp"
int main() {
size_t n;
scanf("%zu", &n);
std::vector<size_t> p(n), q(n);
for (auto& pi: p) scanf("%zu", &pi), --pi;
for (auto& qi: q) scanf("%zu", &qi), --qi;
simultaneous_congruences sc;
for (size_t i = 0; i < n; ++i) {
int a = 0;
int m = 0;
for (size_t x = p[i], j = 0; x != i; x = q[x]) {
++a;
if (j++ > n) return puts("-1"), 0;
}
for (size_t x = p[i], j = 0; j <= n; ++j) {
++m;
x = q[x];
if (x == p[i]) break;
if (j == n) return puts("-1"), 0;
}
if (!sc.push(a, m)) return puts("-1"), 0;
}
printf("%jd\n", sc.get().first);
}