#line 1 "test/aoj_2178.test.cpp"
#define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2178"
#include <cstdint>
#include <cstdio>
#include <array>
#include <map>
#include <vector>
#line 1 "utility/literals.cpp"
/**
* @brief ユーザ定義リテラル
* @author えびちゃん
*/
#include <cstddef>
#line 11 "utility/literals.cpp"
constexpr intmax_t operator ""_jd(unsigned long long n) { return n; }
constexpr uintmax_t operator ""_ju(unsigned long long n) { return n; }
constexpr size_t operator ""_zu(unsigned long long n) { return n; }
constexpr ptrdiff_t operator ""_td(unsigned long long n) { return n; }
constexpr int8_t operator ""_i8(unsigned long long n) { return n; }
constexpr int16_t operator ""_i16(unsigned long long n) { return n; }
constexpr int32_t operator ""_i32(unsigned long long n) { return n; }
constexpr int64_t operator ""_i64(unsigned long long n) { return n; }
constexpr uint8_t operator ""_u8(unsigned long long n) { return n; }
constexpr uint16_t operator ""_u16(unsigned long long n) { return n; }
constexpr uint32_t operator ""_u32(unsigned long long n) { return n; }
constexpr uint64_t operator ""_u64(unsigned long long n) { return n; }
#line 1 "Graph/two_sat.cpp"
/**
* @brief 2-SAT
* @author えびちゃん
*/
#line 11 "Graph/two_sat.cpp"
#line 1 "Graph/adjacency_list.cpp"
/**
* @brief 重みつきグラフの隣接リスト
* @author えびちゃん
*/
#line 10 "Graph/adjacency_list.cpp"
#include <algorithm>
#include <type_traits>
#line 13 "Graph/adjacency_list.cpp"
template <typename WeightType>
class weighted_edge {
public:
using size_type = size_t;
using weight_type = WeightType;
protected:
size_type M_src, M_dst;
weight_type M_weight;
public:
weighted_edge() = default;
weighted_edge(weighted_edge const&) = default;
weighted_edge(weighted_edge&&) = default;
weighted_edge(size_type s, size_type d, weight_type w):
M_src(s), M_dst(d), M_weight(w)
{}
weighted_edge& operator =(weighted_edge const&) = default;
weighted_edge& operator =(weighted_edge&&) = default;
bool operator <(weighted_edge const& other) const {
if (M_weight < other.M_weight) return true;
if (other.M_weight < M_weight) return false;
if (M_src != other.M_src) return M_src < other.M_src;
return M_dst < other.M_dst;
}
size_type source() const { return M_src; }
size_type target() const { return M_dst; }
weight_type weight() const { return M_weight; }
};
struct directed_tag {};
struct undirected_tag {};
template <typename Edge, typename Directedness>
class adjacency_list {
public:
using size_type = size_t;
using edge_type = Edge;
using weight_type = typename Edge::weight_type;
private:
std::vector<std::vector<edge_type>> M_g;
public:
adjacency_list() = default;
adjacency_list(adjacency_list const&) = default;
adjacency_list(adjacency_list&&) = default;
explicit adjacency_list(size_type n): M_g(n) {}
template <typename... Args>
void emplace(size_type src, size_type dst, Args... args) {
M_g[src].emplace_back(src, dst, args...);
if (std::is_same<Directedness, undirected_tag>::value)
M_g[dst].emplace_back(dst, src, args...);
}
void sort_by_index() {
auto cmp = [](auto const& e1, auto const& e2) {
return e1.target() < e2.target();
};
for (auto v: M_g) std::sort(v.begin(), v.end(), cmp);
}
size_type size() const { return M_g.size(); }
auto const& operator [](size_type i) const { return M_g[i]; }
};
#line 1 "Graph/scc.cpp"
/**
* @brief 強連結成分分解
* @author えびちゃん
*/
#line 11 "Graph/scc.cpp"
#line 1 "utility/make/fix_point.cpp"
/**
* @brief ラムダ式の再帰
* @author えびちゃん
*/
#ifndef H_make_fix_point
#define H_make_fix_point
#include <utility>
template <typename Fn>
class fix_point: Fn {
public:
explicit constexpr fix_point(Fn&& f) noexcept: Fn(std::forward<Fn>(f)) {}
template <typename... Args>
constexpr decltype(auto) operator ()(Args&&... args) const {
return Fn::operator ()(*this, std::forward<Args>(args)...);
}
};
template <typename Fn>
static inline constexpr decltype(auto) make_fix_point(Fn&& f) noexcept {
return fix_point<Fn>{std::forward<Fn>(f)};
}
#endif /* !defined(H_make_fix_point) */
#line 14 "Graph/scc.cpp"
template <typename AdjacencyList>
auto strongly_connected_components(AdjacencyList const& g) {
size_t n = g.size();
adjacency_list<weighted_edge<bool>, directed_tag> h(n);
for (size_t v = 0; v < n; ++v)
for (auto const& e: g[v]) h.emplace(e.target(), e.source(), 1);
std::vector<bool> used(n);
std::vector<size_t> vs;
auto dfs = make_fix_point([&](auto f, size_t v) -> void {
used[v] = true;
for (auto const& e: g[v])
if (!used[e.target()]) f(e.target());
vs.push_back(v);
});
for (size_t v = 0; v < n; ++v)
if (!used[v]) dfs(v);
used.assign(n, false);
std::vector<size_t> cmp(n);
size_t num = 0;
auto rdfs = make_fix_point([&](auto f, size_t v) -> void {
used[v] = true;
cmp[v] = num;
for (auto const& e: h[v])
if (!used[e.target()]) f(e.target());
});
for (size_t v = vs.size(); v--;)
if (!used[vs[v]])
rdfs(vs[v]), ++num;
return cmp;
}
#line 14 "Graph/two_sat.cpp"
class two_sat {
public:
using size_type = size_t;
private:
size_type M_n;
adjacency_list<weighted_edge<bool>, directed_tag> M_g;
std::vector<size_type> M_scc;
bool M_sat;
void M_solve() {
if (!M_scc.empty()) return;
M_scc = strongly_connected_components(M_g);
for (size_type i = 0; i < M_n; ++i)
if (M_scc[i] == M_scc[i+M_n]) {
M_sat = false;
return;
}
M_sat = true;
}
public:
two_sat() = default;
explicit two_sat(size_type n): M_n(n), M_g(n+n) {}
void push(size_type i, bool bi, size_type j, bool bj) {
M_scc.clear();
size_type not_i = i + M_n;
size_type not_j = j + M_n;
if (!bi) std::swap(i, not_i);
if (!bj) std::swap(j, not_j);
// i or j, (not i => j, not j => i)
M_g.emplace(not_i, j, 1);
M_g.emplace(not_j, i, 1);
}
bool satisfiable() {
M_solve();
return M_sat;
}
bool operator [](size_type i) {
M_solve();
return M_scc[i+M_n] < M_scc[i];
}
};
#line 11 "test/aoj_2178.test.cpp"
constexpr std::array<size_t, 4> di{{-1_zu, 0, 1, 0}};
constexpr std::array<size_t, 4> dj{{0, -1_zu, 0, 1}};
int testcase_ends() {
size_t n;
scanf("%zu", &n);
if (n == 0) return 1;
using zahyo = std::pair<size_t, size_t>;
std::map<zahyo, size_t> enc;
two_sat ts(n+n);
for (size_t i = 0; i < n; ++i) {
size_t x, y;
char d;
scanf("%zu %zu %c", &x, &y, &d);
size_t i0 = i << 1 | 0;
size_t i1 = i << 1 | 1;
enc[zahyo(x, y)] = i0;
size_t dx = (d == 'x')? 1: 0;
size_t dy = (d == 'y')? 1: 0;
enc[zahyo(x+dx, y+dy)] = i1;
ts.push(i0, true, i1, true);
ts.push(i0, false, i1, false);
}
for (auto const& p: enc) {
auto [i, j] = p.first;
size_t id = p.second;
for (size_t k = 0; k < 4; ++k) {
size_t ni = i + di[k];
size_t nj = j + dj[k];
auto it = enc.find(zahyo(ni, nj));
if (it == enc.end()) continue;
size_t nid = it->second;
if ((id >> 1) == (nid >> 1)) continue;
ts.push(id, false, nid, true);
ts.push(id, true, nid, false);
}
}
puts(ts.satisfiable()? "Yes": "No");
return 0;
}
int main() {
while (!testcase_ends()) {}
}